Auswahl der wissenschaftlichen Literatur zum Thema „High-Resolution X-Ray imaging“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "High-Resolution X-Ray imaging" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "High-Resolution X-Ray imaging"

1

Huang, Wenjun, Junyu Chen, Yi Li, Yueyue Wu, Lianjie Li, Liping Chen und Hai Guo. „Tb3+-doped borosilicate glass scintillators for high-resolution X-ray imaging“. Chinese Optics Letters 21, Nr. 7 (2023): 071601. http://dx.doi.org/10.3788/col202321.071601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Strüder, L. „High-resolution imaging X-ray spectrometers“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 454, Nr. 1 (November 2000): 73–113. http://dx.doi.org/10.1016/s0168-9002(00)00811-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Si, Haoxuan, Lianqiang Shan, Huiyao Du, Li Jiang, Shengzhen Yi, Weimin Zhou und Zhanshan Wang. „High-resolution Mo Kα X-ray monochromatic backlight imaging using a toroidal crystal“. Chinese Optics Letters 21, Nr. 10 (2023): 103401. http://dx.doi.org/10.3788/col202321.103401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carpenter, D. A., und M. A. Taylor. „Fast, High-Resolution X-ray Microfluorescence Imaging“. Advances in X-ray Analysis 34 (1990): 217–21. http://dx.doi.org/10.1154/s0376030800014506.

Der volle Inhalt der Quelle
Annotation:
X-ray micro fluorescence imaging refers to the use of an x-ray beam as a probe to excite XRF in a specimen and produce a spatially resolved image of the element distribution. The advantages of high sensitivity and low background, together with the nondestructive nature of the measurement, have lead to applications of x-ray microfluorescence analysis in biology, geology, materials science, as well as in the area of nondestructive evaluation. Previous reports have described the development of an x-ray microprobe which uses a conventional source of x-rays to produce a 10-μm beam. This paper describes improvements to the microprobe which have increased the beam power and the solid angle of detection. The data collection and display software have also been enhanced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ou, Xiangyu, Xian Qin, Bolong Huang, Jie Zan, Qinxia Wu, Zhongzhu Hong, Lili Xie et al. „High-resolution X-ray luminescence extension imaging“. Nature 590, Nr. 7846 (17.02.2021): 410–15. http://dx.doi.org/10.1038/s41586-021-03251-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fewster, Paul F., Marina V. Baidakova und Reginald Kyutt. „High-resolution X-ray diffraction and imaging“. Journal of Applied Crystallography 46, Nr. 4 (18.07.2013): 841. http://dx.doi.org/10.1107/s0021889813016415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schulman, Eric, und Joel N. Bregman. „High-resolution X-ray imaging of M33“. Astrophysical Journal 441 (März 1995): 568. http://dx.doi.org/10.1086/175383.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schopper, Florian, J. Ninkovic, R. Richter, G. Schaller, T. Selle und J. Treis. „High resolution X-ray imaging with pnCCDs“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 (Dezember 2018): 11–15. http://dx.doi.org/10.1016/j.nima.2017.10.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Strueder, L. „High resolution imaging silicon-x-ray spectrometers“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 522, Nr. 1-2 (April 2004): 146. http://dx.doi.org/10.1016/j.nima.2004.01.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

PLOURABOUE, F., P. CLOETENS, C. FONTA, A. STEYER, F. LAUWERS und J. P. MARC-VERGNES. „X-ray high-resolution vascular network imaging“. Journal of Microscopy 215, Nr. 2 (August 2004): 139–48. http://dx.doi.org/10.1111/j.0022-2720.2004.01362.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "High-Resolution X-Ray imaging"

1

Bykova, Iuliia [Verfasser], und Gisela [Akademischer Betreuer] Schütz. „High-resolution X-ray ptychography for magnetic imaging / Iuliia Bykova ; Betreuer: Gisela Schütz“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1172717419/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McRae, Reagan. „Investigating metal homeostasis in mammalian cells using high resolution imaging techniques“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41197.

Der volle Inhalt der Quelle
Annotation:
The primary aim of the work presented in this thesis is to elucidate novel information regarding the uptake, storage, distributions, and functions of both copper and zinc in mammalian cells by predominantly using a combination of the high resolution imaging modalities, synchrotron radiation X-ray fluorescence microscopy (SXRF) and standard fluorescence imaging. Results from studies using cell permeable, metal ion selective fluorescent probes suggested the presence of labile pools of copper and zinc localized within the mitochondria and Golgi apparatus. Furthermore, SXRF imaging of a cell line defective in the copper transporter, Atox1, revealed intriguing differences in the Cu distribution of Atox1-/- cells compared to the corresponding wild-type cells. Finally, spatially well-resolved SXRF elemental maps of single, adherent mouse cells revealed remarkable changes in the distributions of both zinc and copper as the cells progressed through the cell cycle. Taken together, findings suggested major roles for copper and zinc within a native biological setting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stephan, Sandra. „High-Resolution 3D Ptychography“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113219.

Der volle Inhalt der Quelle
Annotation:
Coherent imaging is a promising method in the field of x-ray microscopy allowing for the nondestructive determination of the interior structure of radiation-hard samples with a spatial resolution that is only limited by the fluence on the sample and the scattering strength of the sample. Ultimately, the achievable spatial resolution is limited by the wavelength of the incoming x-ray radiation. Combining coherent imaging with scanning microscopy to a method called ptychography enables one to also probe extended objects. In this method, a sample is scanned through a defined coherent x-ray beam and at each scan point a diffraction pattern is recorded with a diffraction camera located in the far field of the sample. Neighboring illuminated areas must have a certain overlap to guarantee the collection of sufficient information about the object for a subsequent successful and unique computational reconstruction of the object. Modern ptychographic reconstruction algorithms are even able to reconstruct the complex-valued transmission function of the sample and the complex illumination wave field at the same time. Once the 2D transmission function of a sample is known, it is an obvious step forward to combine ptychography with tomographic techniques yielding the 3D internal structure of an object with unprecedented spatial resolution. Here, projections at varying angular positions of the sample are generated via ptychographic scans and are subsequently used for the tomographic reconstruction. In this thesis the development of 3D ptychography is described. It includes the description of the required experimental environment, the numerical implementation of ptychographic phase retrieval and tomographic reconstruction routines, and a detailed analysis of the performance of 3D ptychography using an example of an experiment carried out at beamline P06 of PETRA III at DESY in Hamburg. In that experiment the investigated object was a Mo/UO2 thin film, which is a simplified model for spent nuclear fuel from nuclear power plant reactors. Such models find application in systematic scientific investigations related to the safe disposal of nuclear waste. We determined the three-dimensional interior structure of this sample with an unprecedented spatial resolution of at least 18 nm. The measurement of the fluorescence signal at each scan point of the ptychograms delivers the two- and three-dimensional elemental distribution of the sample with a spatial resolution of 80 nm. Using the fluorescence data, we assigned the chemical element to the area of the corresponding phase shift in the ptychographic reconstruction of the object phase and to the corresponding refractive index decrement in the tomographic reconstruction. The successful demonstration of the feasibility of the 3D ptychography motivates further applications, for instance, in the field of medicine, of material science, and of basic physical research
Kohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar. Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen. Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt. In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde. Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet. Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden. Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ullherr, Maximilian [Verfasser], und Randolf [Gutachter] Hanke. „Optimization of Image Quality in High-Resolution X-Ray Imaging / Maximilian Ullherr ; Gutachter: Randolf Hanke“. Würzburg : Universität Würzburg, 2021. http://d-nb.info/1230758577/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fella, Christian [Verfasser], und Randolf [Gutachter] Hanke. „High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics / Christian Fella ; Gutachter: Randolf Hanke“. Würzburg : Universität Würzburg, 2017. http://d-nb.info/1132995809/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Setlur, Nagesh Swetadri Vasan. „Improved imaging for x-ray guided interventions| A high resolution detector system and patient dose reduction technique“. Thesis, State University of New York at Buffalo, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3613101.

Der volle Inhalt der Quelle
Annotation:

Over the past couple of decades there has been tremendous advancements in the field of medicine and engineering technology. Increases in the level of integration between these two branches of science has led to better understanding of physiology and anatomy of a living organism, thus allowing for better understanding of diseases along with their cures and treatments. The work presented in this dissertation aims at improving the imaging aspects of x-ray image guided interventions with endovascular image guided intervention as the primary area of application.

Minimally invasive treatments for neurovascular conditions such as aneurysms, stenosis, etc involve guidance of catheters to the treatment area, and deployment of treatment devices such as stents, coils, balloons, etc, all under x-ray image guidance. The features in these device are in the order of a few 10 µm's to a few 100 µm's and hence demand higher resolution imaging than the current state of the art flat panel detector. To address this issue three high resolution x-ray cameras were developed. The Micro Angiography Fluoroscope (MAF) based on a Charge Coupled Device (MAF-CCD), the MAF based on Complementary Metal Oxide Semiconductors (MAF-CMOS) and the Solid State X-ray Image Intensifier based on Electron Multiplying CCDs. The construction details along with performance evaluations are presented. The MAF-CCD was successfully used in a few interventions on human patient to treat neurovascular conditions, primarily aneurysm. Images acquired by the MAF-CCD during these procedures are presented.

A software platform CAPIDS was previously developed to facilitate the use of the high resolution MAF-CCD in a clinical environment. In this work the platform was modified to be used with any camera. The upgrades to CAPIDS, along with parallel programming including both the Graphics Processing Unit (GPU) and Central Processing Unit (CPU) are presented.

With increasing use of x-ray guidance for minimally invasive interventions, a major cause of concern is that of prolonged exposure to x-ray radiation that can cause biological damage to the patient. Hence during x-ray guided procedures necessary steps must be taken to minimize the dose to the patient. In this work a novel dose reduction technique, using a combination of Region of Interest (ROI) fluoroscopy to reduce dose along with spatially different temporal filtering to restore image quality is presented.

Finally a novel ROI imaging technique for biplane imaging in interventional suites, combining the use of high resolution detector along with dose reduction technique using ROI fluoroscopy with spatially different temporal filtering is presented.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pedersen, Thomas Sunn 1970. „Edge plasma phenomena in the Alcator C-Mod tokamak measured by high resolution X-ray imaging diagnostics“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9025.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 2000.
Includes bibliographical references (p. 203-206).
In this thesis high resolution soft x-ray measurements from the Alcator C-Mod plasma edge are presented for a variety of different plasma conditions. These measurements provide radial profiles of the soft x-ray emissivity with 1.5 mm resolution or better, and temporal resolution down to 12 [mu]s. These profiles show a distinct and very narrow pedestal shape in H-mode, indicative of the H-mode transport barrier. The soft x-ray emissivity pedestal at the outboard edge is typically 10 mm inside the last closed flux surface, near the top of the electron density and temperature pedestals. Modelling shows that the inward shift of the x-ray pedestal implies an inward shift of the impurity density pedestal. This inward shift is explained by an inward impurity pinch located in the region of strong electron density gradient, as predicted by neoclassical impurity transport theory. Calculations using the impurity transport code MIST support the existence of a neoclassical-like inward pinch. Changes in the soft x-ray pedestal width can be interpreted as changes in the edge impurity diffusion coefficient. We find several scaling laws of the edge diffusion coefficient with various plasma parameters in EDA H-mode. A second array views the top of the plasma. The x-ray emissivity measured with this array also shows a distinct and narrow pedestal in H-mode. However, it is located significantly closer to the separatrix and is often narrower. Both of these differences increase with the safety factor at the edge, q95 . Thus, there is a significant poloidal asymmetry in the impurity density in the H-mode edge region, which increases with q95 . Therefore, the impurity transport in the H-mode edge is highly two-dimensional. The strong poloidal asymmetries measured show some quantitative agreement with theories developed to explain poloidal impurity asymmetries. However, none of the theories are strictly applicable to the Alcator C-Mod edge, and they all significantly underestimate the actual asymmetries that we observe.
by Thomas Sunn Pedersen.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alaribe, Leonard [Verfasser], und Harald [Akademischer Betreuer] Hillebrecht. „Development of SrI2:Eu2+ - Scintillators for Gamma Ray spectroscopy and high resolution X-Ray imaging = Entwicklung von SrI2:Eu2+ - Szintillatoren für Gammastrahl-Spektroskopie und hochauflösende Röntgen-Bildgebung“. Freiburg : Universität, 2013. http://d-nb.info/1115495089/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baier, Sina, Christian D. Damsgaard, Maria Scholz, Federico Benzi, Amélie Rochet, Robert Hoppe, Torsten Scherer et al. „In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature“. Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70694.

Der volle Inhalt der Quelle
Annotation:
A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

De, cesare Cinzia. „Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT084/document.

Der volle Inhalt der Quelle
Annotation:
L'apparition des détecteurs à comptage de photons X à base de CdTe avec des capacités de discrimination de l'énergie des photons ouvre de nouvelles perspectives pour l'imagerie radiographique. Les applications médicales et en contrôle de bagages X sont caractérisées par un flux de photons X très élevé, et exigent par conséquent une mise en forme très rapide du photo-courant mesuré pour limiter les empilements. Cependant, si cette mise en forme est plus courte que le temps de transit des électrons dans le semi-conducteur, la charge mesurée devient inférieure à la charge déposée : c’est le déficit balistique. Par ailleurs, la variation dans le temps du profil du champ électrique dans le volume du détecteur entraîne une augmentation du temps de transit des électrons. En conséquence, la charge mesurée diminue dans le temps, faussant la mesure de l’énergie des photons X. L’objectif de ce travail est de caractériser cette instabilité et de développer une méthode de correction de son effet sur les spectres en énergie. Nous avons proposé un algorithme de correction basé sur l'utilisation de deux Lignes à Retard (LAR). Une LAR rapide (50ns ?) permet de mesurer les spectres X à très fort flux sans compromis sur le taux de comptage. Une LAR lente (200ns ?) est utilisée pour mesurer intégralement la charge déposée sans déficit balistique. Un facteur de correction est évalué et utilisé pour stabiliser la mesure de l’énergie des X avec la LAR rapide. Une étape importante de cet algorithme consiste à trier les impulsions traitées pour rejeter celles qui peuvent dégrader la mesure de ce facteur de correction, notamment les empilements. La méthode proposée a été implémentée dans un FPGA pour fonctionner en temps réel et a été testée avec un détecteur CdTe de 3mm d'épaisseur avec 4×4 pixels au pas de 800 microns, capable de mesurer des spectres X dans la gamme d'énergie 20-160 keV avec 256 canaux d'énergie. La méthode développée a été initialement testée à faible taux de comptage avec des sources gamma Co-57 et Am-241, puis à fort taux de comptage jusqu'à ~2 Mc/s avec un tube à rayons X. Cet algorithme innovant a montré sa capacité de fournir une réponse stable du détecteur dans le temps sans affecter la résolution d'énergie (7 % à 122 keV) et le temps mort (~70 ns)
The emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns)
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "High-Resolution X-Ray imaging"

1

Conference on High Resolution X-ray Diffraction and Imaging (7th 2004 Prague, Czech Republic). Selected papers from XTOP 2004: 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging, Prague, 2-5 September 2004. Herausgegeben von Holý Václav 1953-. Bristol, UK: Institute of Physics Pub., 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

W, Deutsch Eric, und United States. National Aeronautics and Space Administration., Hrsg. Hubble Space Telescope imaging of bright galactic x-ray binaries in crowded fields. [Washington, DC: National Aeronautics and Space Administration, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Karthikeyan, D. High-resolution computed tomography of the lungs: A pattern approach. London: Hodder Arnold, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

United States. National Aeronautics and Space Administration., Hrsg. [Development of high resolution imaging detectors for X ray astronomy]: [final report, 1 May 1982 - 30 Jun. 1991]. [Washington, DC: National Aeronautics and Space Administration, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

J, Swenson Stephen, Hrsg. High resolution CT of the chest. Philadelphia: Lippincott, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Stern, Eric J. High-resolution CT of the chest: Comprehensive atlas. Philadelphia: Lippincott-Raven, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

J, Swensen Stephen, Hrsg. High-resolution CT of the chest: Comprehensive atlas. 2. Aufl. Philadelphia: Lippincott Williams & Wilkins, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stern, Eric J. High-resolution CT of the chest: Comprehensive atlas. 3. Aufl. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

1948-, Müller Nestor Luiz, und Naidich David P, Hrsg. High-resolution CT of the lung. 3. Aufl. Philadelphia: Lippincott Williams & Wilkins, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

1948-, Müller Nestor Luiz, und Naidich David P, Hrsg. High-resolution CT of the lung. 2. Aufl. Philadelphia: Lippincott-Raven, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "High-Resolution X-Ray imaging"

1

Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott und David C. Joy. „High Resolution Imaging“. In Scanning Electron Microscopy and X-Ray Microanalysis, 147–64. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams et al. „High-Resolution SEM Imaging“. In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 61–66. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams et al. „High-Resolution SEM Imaging“. In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 242–50. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_40.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carpenter, D. A., und M. A. Taylor. „Fast, High-Resolution X-Ray Microfluorescence Imaging“. In Advances in X-Ray Analysis, 217–21. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3744-1_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jacobsen, C., S. Lindaas und M. R. Howells. „X-Ray Holography Using Photoresists: High Resolution Lensless Imaging“. In X-Ray Microscopy III, 244–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46887-5_57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Golub, Leon. „Very High Resolution Solar X-ray Imaging“. In Mechanisms of Chromospheric and Coronal Heating, 115–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lehr, J. „High-Resolution Three-Dimensional Imaging with an X-Ray Microscope“. In X-Ray Microscopy and Spectromicroscopy, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72106-9_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bayat, Sam, Christian Dullin, Marcus J. Kitchen und Goran Lovric. „Synchrotron X-Ray-Based Functional and Anatomical Lung Imaging Techniques“. In Advanced High-Resolution Tomography in Regenerative Medicine, 151–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00368-5_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Saint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford und Brian Dennis. „Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution“. In Handbook of X-ray and Gamma-ray Astrophysics, 1783–816. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford und Brian Dennis. „Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution“. In Handbook of X-ray and Gamma-ray Astrophysics, 1–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_170-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "High-Resolution X-Ray imaging"

1

Wood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield et al. „High Resolution Soft-X-Ray Projection Imaging“. In Soft X-Ray Projection Lithography. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/sxray.1991.wb1.

Der volle Inhalt der Quelle
Annotation:
The principal motivation for carrying out projection imaging with soft-x-rays instead of with visible or ultraviolet light lies in the dramatic improvement in resolution that can be obtained (while maintaining a usable depth of focus). Although there are many reports of soft-x-ray imaging in the literature,1-6 soft-x-ray imaging with truly high resolution has only recently been demonstrated.7 In this talk we describe the results of several experiments which have demonstrated projection imaging in the soft-x-ray spectral region with a resolution approaching the Rayleigh limit, 1.22 λ/2NA where λ is wavelength and NA is numerical aperture of the imaging system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cash, Webster. „High resolution X-ray imaging“. In SMALL MISSIONS FOR ENERGETIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1302219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield et al. „High Resolution Soft-X-Ray Projection Imaging“. In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.wb1.

Der volle Inhalt der Quelle
Annotation:
The principal motivation for carrying out projection imaging with soft-x-rays instead of with visible or ultraviolet light lies in the dramatic improvement in resolution that can be obtained (while maintaining a usable depth of focus). Although there are many reports of soft-x-ray imaging in the literature,1-6 soft-x-ray imaging with truly high resolution has only recently been demonstrated.7 In this talk we describe the results of several experiments which have demonstrated projection imaging in the soft-x-ray spectral region with a resolution approaching the Rayleigh limit, 1.22λ/2NA where λ is wavelength and NA is numerical aperture of the imaging system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wan, A. S., L. B. Da Silva, T. W. Barbee, R. C. Cauble, P. Celliers, H. R. Lee, S. B. Libby et al. „Application of X-ray Lasers as Imaging and Plasma Diagnostics“. In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wb4.

Der volle Inhalt der Quelle
Annotation:
Since the first demonstration of a soft x-ray laser (XRL) at the Lawrence Livermore National Laboratory1, XRLs have been considered for applications in the fields of microscopy, holography, material science, and plasma physics. With its short wavelength, controllable short pulse duration, high brightness and coherence, the XRL is ideally suited as a plasma diagnostic to image rapidly evolving (< 1 ns) laser-driven plasmas with high electron density (1021 cm-3 < ne< 1024 cm-3). Over the past 2 years, we have made significant progress in the development of short-wavelength multilayer mirrors and beam splitters in the soft x-ray regime and are pioneering the development of XRLs as an imaging diagnostic for laser plasmas. We have used XRLs as high fluency monochromatic radiographic sources2. We have also used XRLs to measure 1-D density gradients of laser plasmas using the Moiré deflectometry technique2. We have began testing a 2-D XRL interferometer, in the Mach-Zehnder configuration, which will allow us to measure absolute 2-D plasma density profiles. The demonstration of the 2-D interferometer and the application of this interferometer to understand the physics of laser plasmas will be our primary focus for the near future. We are also working on the development of enhanced-coherence, high-brightness XRLs. During the past year we have experimentally and theoretically characterized shaped XRLs3 as part of our research on adaptive spatially filtered XRLs to develop a single-mode oscillator which has application beyond the 2-D interferometer and can yield a 3-D hologram of an imploding inertial confinement fusion (ICF) capsule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Street, Robert A., Steve E. Ready, Jeffrey T. Rahn, Marcelo Mulato, Kanai S. Shah, Paul R. Bennett, Ping Mei et al. „High-resolution direct-detection x-ray imagers“. In Medical Imaging 2000, herausgegeben von James T. Dobbins III und John M. Boone. SPIE, 2000. http://dx.doi.org/10.1117/12.384516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Roehrig, H., W. J. Dallas, T. W. Ovitt, R. D. Lamoreaux, R. Vercillo und K. M. McNeill. „A High Resolution X-Ray Imaging Devicm“. In OE/LASE '89, herausgegeben von Illes P. Csorba. SPIE, 1989. http://dx.doi.org/10.1117/12.952543.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Larsson, Jakob C., William Vågberg, Carmen Vogt, Ulf Lundström, Daniel H. Larsson und Hans M. Hertz. „High-spatial-resolution nanoparticle x-ray fluorescence tomography“. In SPIE Medical Imaging, herausgegeben von Despina Kontos, Thomas G. Flohr und Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kashyap, Y. S., A. Agrawal, P. S. Sarkar, Mayank Shukla, T. Roy, Amar Sinha, Dinesh K. Aswal und Anil K. Debnath. „High Resolution X-ray Microscopy For Nano-Resolution Imaging“. In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eschen, Wilhelm, Chang Liu, Daniel S. Penagos M., Robert Klas, Jens Limpert und Jan Rothhardt. „High-speed, high-resolution, and material-specific coherent EUV imaging using a high-order harmonic source“. In Compact EUV & X-ray Light Sources. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/euvxray.2024.ew3a.4.

Der volle Inhalt der Quelle
Annotation:
We present a tabletop coherent imaging system at 13.5 nm driven by an ultrafast 75 W fiber laser, achieving a record imaging-speed of 5 Mpix/h, enabling detailed chemical composition mapping for samples from microbiology and the semiconductor industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ben Yehuda, A., O. Sefi, E. Cohen und S. Shwartz. „High-resolution Imaging with Scattered X-ray Radiation“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.am4q.7.

Der volle Inhalt der Quelle
Annotation:
We demonstrate ghost imaging with scattered x-ray radiation for the first time and show that its spatial resolution is significantly higher than the resolution of standard present-day methods that rely on x-ray scattering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "High-Resolution X-Ray imaging"

1

Silfvast, W. T. Simplified Ultra-High Resolution Optic for Soft-X-Ray Imaging. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1993. http://dx.doi.org/10.21236/ada278424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jing, Zhenxue. A High Resolution Scanning Slot X-Ray Imaging Detector for Digital Mammography. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada363627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Diebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada488612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Diebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, Juni 2006. http://dx.doi.org/10.21236/ada457700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Diebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, Juni 2007. http://dx.doi.org/10.21236/ada472126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bitter, M., D. Gates, D. Monticello, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada und J. Rice. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), Juli 2010. http://dx.doi.org/10.2172/984471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bitter, M., D. Gates, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada und J. Rice. Design Parameters and Objectives of a High-�Resolution X-�ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), Mai 2010. http://dx.doi.org/10.2172/981706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pablant, N. A., L. Delgado-Apricio, M. Goto, K. W. Hill, S. Lzerson, S. Morita, A. L. Roquemore et al. Layout And Results From The Initial Operation Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1063122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hill, K. W., Ch Broennimann, E. F. Eikenberry, A. Ince-Cushman, S. G. Lee, J. E. Rice und S. Scott. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/960230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hill, K., Ch Broennimann, E. Eikenberry, A. Ince-Cushman, S. Lee, J. Rice, S. Scott und R. Barnsley. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/960413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie