Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „High Q² sensitivity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "High Q² sensitivity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "High Q² sensitivity"
Zhang, Yuguang, Shoubao Han, Senlin Zhang, Penghao Liu und Yaocheng Shi. „High-Q and High-Sensitivity Photonic Crystal Cavity Sensor“. IEEE Photonics Journal 7, Nr. 5 (Oktober 2015): 1–6. http://dx.doi.org/10.1109/jphot.2015.2469131.
Der volle Inhalt der QuelleHelm, P. J. S., M. Dagenais, M. A. Krainak und R. Leavitt. „High-sensitivity semiconductor optically preamplified Q-PPM receiver“. IEEE Photonics Technology Letters 9, Nr. 10 (Oktober 1997): 1394–96. http://dx.doi.org/10.1109/68.623274.
Der volle Inhalt der QuelleGaber, Noha, Yasser Sabry, Mazen Erfan, Frédéric Marty und Tarik Bourouina. „High-Q Fabry–Pérot Micro-Cavities for High-Sensitivity Volume Refractometry“. Micromachines 9, Nr. 2 (31.01.2018): 54. http://dx.doi.org/10.3390/mi9020054.
Der volle Inhalt der QuelleConradi, Mark S. „Marginal oscillators: High sensitivity, simple detectors of Q changes“. Journal of the Acoustical Society of America 95, Nr. 5 (Mai 1994): 2811. http://dx.doi.org/10.1121/1.409741.
Der volle Inhalt der QuelleKim, Sejeong, Hwi-Min Kim und Yong-Hee Lee. „Single nanobeam optical sensor with a high Q-factor and high sensitivity“. Optics Letters 40, Nr. 22 (10.11.2015): 5351. http://dx.doi.org/10.1364/ol.40.005351.
Der volle Inhalt der QuelleLalauze, R., C. Pijolat, S. Vincent und L. Bruno. „High-sensitivity materials for gas detection“. Sensors and Actuators B: Chemical 8, Nr. 3 (Juni 1992): 237–43. http://dx.doi.org/10.1016/0925-4005(92)85024-q.
Der volle Inhalt der QuelleHu, Senyong, Yunhao Cao, Shengxiao Jin und Wengang Wu. „Design of a high-sensitivity and high-Q microwave sensor based on H-fractal metasurface structure“. Advances in Engineering Technology Research 1, Nr. 3 (02.02.2023): 850. http://dx.doi.org/10.56028/aetr.3.1.850.
Der volle Inhalt der QuelleKhusnutdinov, R. R., G. V. Mozzhukhin, N. R. Khusnutdinova und B. M. Salakhutdinov. „High-Q litz wire NQR sensor for medical applications“. Power engineering: research, equipment, technology 25, Nr. 3 (21.08.2023): 3–11. http://dx.doi.org/10.30724/1998-9903-2023-25-3-3-11.
Der volle Inhalt der QuelleClevenson, Hannah, Pierre Desjardins, Xuetao Gan und Dirk Englund. „High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity“. Applied Physics Letters 104, Nr. 24 (16.06.2014): 241108. http://dx.doi.org/10.1063/1.4879735.
Der volle Inhalt der QuelleLing, Tao, Sung-Liang Chen und L. Jay Guo. „High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators“. Applied Physics Letters 98, Nr. 20 (16.05.2011): 204103. http://dx.doi.org/10.1063/1.3589971.
Der volle Inhalt der QuelleDissertationen zum Thema "High Q² sensitivity"
Paxton, Thanai. „Ultra-high sensitivity unambiguous sequencing on a novel geometry quadrupole orthogonal-acceleration time of flight mass spectrometer, the Q-TOF“. Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322004.
Der volle Inhalt der QuelleJoshi, Shivam. „Characterization of resistive Micromegas for High Angle-Time Projection Chambers readout and preparation of neutrino physics analysis with upgraded near detector of T2K experiment“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP123.
Der volle Inhalt der QuelleThe PhD work is in the field of Neutrino Physics as a part of the T2K experiment. The thesis is divided into two subjects- detector characterization and preparation of physics analysis. In the context of the upgrade of T2K near detector- ND280, a model was developed and utilized to characterize the charge spreading in novel resistive Micromegas (ERAM) detector. In addition, pad-by-pad gain and energy resolution was obtained for each ERAM for a complete characterization. The results directly led to the selection of specific ERAMs for installation at specific positions in the High Angle-Time Projection Chamber anode planes for charge readout. In total, 37 ERAMs were successfully characterized using X-ray data from a test bench at CERN. This information was also used as inputs for reconstruction. Improvement in statistics and detection efficiency of charged-current quasi-elastic events in high Q² (4-momentum transfer) region after the ND280 upgrade was studied. The question of- how effectively the high Q² uncertainties will be constrained after the ND280 upgrade by the 4 high Q² parameters in the neutrino-nucleus cross-section model was addressed using T2K re-weighting tools and the ND280 fitter- GUNDAM. An important source of the high Q² uncertainties is the axial-vector form factor model (dipole) used currently in the cross-section model. Some alternative form factor models that can better constrain these uncertainties were also studied. The effect of uncertainties in nucleon removal energy estimation on different variables (muon kinematics, neutrino energy, etc.) was studied. Binned splines were produced for the 4 removal energy parameters in the cross-section model in the context of Oscillation Analysis using data collected in 2024
Buchteile zum Thema "High Q² sensitivity"
Ishchenko, Alexander A., Yurii L. Slominskii und Illia P. Sharanov. „High-efficiency polymethine dyes for passive Q-switch and mode locking of neodymium lasers“. In NEW FUNCTIONAL SUBSTANCES AND MATERIALS FOR CHEMICAL ENGINEERING, 39–52. PH “Akademperiodyka”, 2021. http://dx.doi.org/10.15407/akademperiodyka.444.039.
Der volle Inhalt der QuelleSarid, Dror. „Capacitance Detection System“. In Scanning Force Microscopy, 65–74. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195092042.003.0005.
Der volle Inhalt der QuelleMilic, Ljiljana. „IIR Filters to Sampling Rate Conversion“. In Multirate Filtering for Digital Signal Processing, 136–70. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-178-0.ch005.
Der volle Inhalt der QuelleBaldovin, Fulvio. „Numerical Analysis of Conservative Maps: A Possible Foundation of Nonextensive Phenomena“. In Nonextensive Entropy. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195159769.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "High Q² sensitivity"
Cao, Yunhao, Hongshun Sun, Yusa Chen, Liye Li, Lijun Ma und Wengang Wu. „A Self-Aligned Assembling Terahertz Metasurface Microfluidic Sensor with High Sensing Performance“. In CLEO: Applications and Technology, JTu2A.56. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.56.
Der volle Inhalt der QuelleChishti, Abdul Rehman, Abdul Aziz, Rifaqat Hussain, Sharif Iqbal Mitu Sheikh und Abdullah Algarni. „Development of a Compact Terahertz Band Absorber with Enhanced Q-Factor for Biomedical Applications Requiring High Sensitivity“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1571–72. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686254.
Der volle Inhalt der QuelleSalama, Norhan A., Salah S. A. Obayya und Mohamed A. Swillam. „Ultra-Sensitive Quantitative Detection of Ethanol using Metal Organic Framework Integrated Metasurface“. In Frontiers in Optics, JW4A.47. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw4a.47.
Der volle Inhalt der QuelleQian, Hangyu, Shuxian Wu, Zonglin Wu, Feihong Bao, Guomin Yang, Jie Zou und Gongbin Tang. „A High Sensitivity Temperature Sensor Using High-Q NS-SAW Resonator“. In 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). IEEE, 2022. http://dx.doi.org/10.1109/eftf/ifcs54560.2022.9850684.
Der volle Inhalt der QuelleDong, Bing, Dongshan Wei, Zhilin Ke, Jing Liu und Dongxiong Ling. „Design of high-Q and high-sensitivity terahertz metamaterial sensors for trace detection“. In Fourteenth International Conference on Information Optics and Photonics (CIOP 2023), herausgegeben von Yue Yang. SPIE, 2023. http://dx.doi.org/10.1117/12.3004104.
Der volle Inhalt der QuellePark, Yong-Hwa, und K. C. Park. „Design Sensitivity Analysis for the Performance Improvement of High-Q MEMS Resonators“. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1351.
Der volle Inhalt der QuelleLi, Bei-Bei, Qing-Yan Wang, Xue-Feng Jiang, Qihuang Gong und Yun-Feng Xiao. „High-sensitivity temperature sensing by employing an on-chip high-Q PDMS-coated toroidal microcavity“. In SPIE Defense, Security, and Sensing, herausgegeben von Hai Xiao, Xudong Fan und Anbo Wang. SPIE, 2011. http://dx.doi.org/10.1117/12.886258.
Der volle Inhalt der QuelleYang, Daquan, Huiping Tian und Yuefeng Ji. „Photonic Crystal Nanobeam Air-mode Cavity for High-Q and High Sensitivity Refractive Index Sensing“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_at.2014.jw2a.8.
Der volle Inhalt der QuelleYang, Daquan, Shota Kita, Cheng Wang, Qimin Quan, Marko Loncar, Huiping Tian und Yuefeng Ji. „A Novel Nanoslotted Quadrabeam Photonic Crystal Cavity Sensor with High Sensitivity and High Q-factor“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sm3e.4.
Der volle Inhalt der QuelleTingyu Li, Zhenguo Wang, Dingshan Gao und Xinliang Zhang. „High Q one-dimensional photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing“. In 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340282.
Der volle Inhalt der Quelle