Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: High-energy nuclear collisions.

Zeitschriftenartikel zum Thema „High-energy nuclear collisions“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "High-energy nuclear collisions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Andronov, Evgeny, Magdalena Kuich und Marek Gazdzicki. „Diagram of High-Energy Nuclear Collisions“. Universe 9, Nr. 2 (18.02.2023): 106. http://dx.doi.org/10.3390/universe9020106.

Der volle Inhalt der Quelle
Annotation:
Many new particles, mostly hadrons, are produced in high-energy collisions between atomic nuclei. The most popular models describing the hadron-production process are based on the creation, evolution and decay of resonances, strings or quark–gluon plasma. The validity of these models is under vivid discussion, and it seems that a common framework for this discussion is missing. Here, for the first time, we explicitly introduce the diagram of high-energy nuclear collisions, where domains of the dominance of different hadron-production processes in the space of laboratory-controlled parameters, the collision energy and nuclear-mass number of colliding nuclei are indicated. We argue that the recent experimental results suggest the location of boundaries between the domains, allowing for the first time to sketch an example diagram. Finally, we discuss the immediate implications for experimental measurements and model development following the proposed sketch of the diagram.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, F. H. „Transverse-energy distribution in proton–nucleus collisions at high energy“. Canadian Journal of Physics 79, Nr. 4 (01.04.2001): 739–48. http://dx.doi.org/10.1139/p01-039.

Der volle Inhalt der Quelle
Annotation:
Based on the model of nuclear-collision geometry, the independent N–N collision picture and participant contribution picture are used to describe the transverse-energy distribution in p–A collisions at high energy. In the independent N–N collision picture, the energy loss of leading proton in each p–N collision is considered. The calculated results are in agreement with the experimental data of p–Al, p–Cu, and p–U collisions at 200 GeV/c. PACS Nos.: 13.85-t, 13.85Hd, 25.75-q
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Müller, Berndt. „Parton Cascades in High-Energy Nuclear Collisions“. International Journal of Modern Physics E 12, Nr. 02 (April 2003): 165–76. http://dx.doi.org/10.1142/s0218301303001247.

Der volle Inhalt der Quelle
Annotation:
This is a review of the parton cascade model (PCM) which provides a QCD-based description of nucleus-nucleus reactions at very high energy. The PCM describes the collision dynamics within the early and dense phase of the reaction in terms of the relativistic, probabilistic transport of perturbative excitations (partons) of the QCD vacuum, combined with the renormalization group flow of the parton virtuality. The current state of numerical implementations of the model, as well as its predictions for nuclear collisions at RHIC and LHC are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Klein, Spencer R., und Peter Steinberg. „Photonuclear and Two-Photon Interactions at High-Energy Nuclear Colliders“. Annual Review of Nuclear and Particle Science 70, Nr. 1 (19.10.2020): 323–54. http://dx.doi.org/10.1146/annurev-nucl-030320-033923.

Der volle Inhalt der Quelle
Annotation:
Ultraperipheral collisions (UPCs) of heavy ions and protons are the energy frontier for electromagnetic interactions. Both photonuclear and two-photon collisions are studied at collision energies that are far higher than those available elsewhere. In this review, we discuss physics topics that can be addressed with UPCs, including nuclear shadowing, nuclear structure, and searches for physics beyond the Standard Model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nara, Yasushi. „JAM: an event generator for high energy nuclear collisions“. EPJ Web of Conferences 208 (2019): 11004. http://dx.doi.org/10.1051/epjconf/201920811004.

Der volle Inhalt der Quelle
Annotation:
We review recent developments of an event generator JAM microscopic transport model to simulate high energy nuclear collisions, especially at high baryon density regions. Recent developments focus on the collective effects: implementation of nuclear potentials, equation of state (EoS) modified collision term, and dynamical integration of fluid dynamics. With these extensions, we can discuss the EoS dependence of the transverse collective flows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Yunpeng, Kai Zhou und Pengfei Zhuang. „Quarkonia in high energy nuclear collisions“. International Journal of Modern Physics E 24, Nr. 11 (November 2015): 1530015. http://dx.doi.org/10.1142/s0218301315300155.

Der volle Inhalt der Quelle
Annotation:
We first review the cold and hot nuclear matter effects on quarkonium production in high energy collisions, then discuss three kinds of models to describe the quarkonium suppression and regeneration: the sequential dissociation, the statistical production and the transport approach, and finally make comparisons between the models and the experimental data from heavy ion collisions at SPS, RHIC and LHC energies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Karol, Paul J. „Transparency in high-energy nuclear collisions“. Physical Review C 46, Nr. 5 (01.11.1992): 1988–95. http://dx.doi.org/10.1103/physrevc.46.1988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

He, Hang, Yunpeng Liu und Pengfei Zhuang. „Ωcccproduction in high energy nuclear collisions“. Physics Letters B 746 (Juni 2015): 59–63. http://dx.doi.org/10.1016/j.physletb.2015.04.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fries, R. J. „High energy nuclear collisions: Theory overview“. Pramana 75, Nr. 2 (August 2010): 235–45. http://dx.doi.org/10.1007/s12043-010-0112-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fabjan, Christian W. „Detectors for high energy nuclear collisions“. Nuclear Physics A 461, Nr. 1-2 (Januar 1987): 371–74. http://dx.doi.org/10.1016/0375-9474(87)90498-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Qiu, Jian-Wei. „Universal nuclear dependence in high energy nuclear collisions“. Nuclear Physics A 782, Nr. 1-4 (Februar 2007): 234–41. http://dx.doi.org/10.1016/j.nuclphysa.2006.10.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

WONG, C. Y. „NUCLEAR STOPPING POWER IN NUCLEON-NUCLEUS AND NUCLEUS-NUCLEUS COLLISIONS“. Modern Physics Letters A 04, Nr. 20 (10.10.1989): 1965–73. http://dx.doi.org/10.1142/s0217732389002227.

Der volle Inhalt der Quelle
Annotation:
The nuclear stopping power, as revealed by nucleon-nucleus and nucleus-nucleus collisions, indicates that the incident nuclear matter loses a substantial fraction of its energy in the collision process. As this energy lost by the nuclear matter is converted into the energy of the hadron matter produced in the center-of-mass region, the nuclear stopping process in high-energy heavy-ion collisions appears to be an excellent tool to produce regions of very high energy density, with a possibility of leading to the formation of a quark-gluon plasma.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Kopeliovich, B. Z., J. Nemchik, I. K. Potashnikova und Iván Schmidt. „Energy conservation in high-pT nuclear reactions“. International Journal of Modern Physics E 23, Nr. 04 (April 2014): 1430006. http://dx.doi.org/10.1142/s0218301314300069.

Der volle Inhalt der Quelle
Annotation:
The Cronin effect, which is nuclear enhancement of high-pT hadron production in pA collisions was successfully predicted prior the measurements at RHIC and LHC. The restrictions imposed by energy conservation lead to spectacular effects. Energy deficit becomes an issue for hadron production in pA collisions at large xL and/or large xT toward the kinematic bounds xL, T = 1. It leads to a suppression, which has been indeed observed for hadrons produced at forward rapidities and large pT. Intensive energy dissipation via gluon radiation by a highly virtual parton produced with large pT, makes this process impossible to continue long. Color neutralization and creation of a colorless dipole must occur promptly. When this happens inside a hot medium created in AA collisions, attenuation of dipoles, rather than induced energy loss, becomes a dominant mechanism for suppression of high-pT hadrons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lim, Kian Hwee, Aik Hui Chan und Choo Hiap Oh. „Transverse Energy Density in High Energy Heavy Ion Collisions“. EPJ Web of Conferences 240 (2020): 07006. http://dx.doi.org/10.1051/epjconf/202024007006.

Der volle Inhalt der Quelle
Annotation:
A phenomenological model describing the transverse energy distribution (ET) of nuclear collisions is first studied in detail by fitting it on ET data for O-Pb collisions at √sNN = 200 GeV per nucleon obtained from the NA35 collaboration. Next, the model is used to fit the ET data for Pb-Pb collisions at LHC energies of √sNN = 2.76 TeV per nucleon obtained from the ATLAS collaboration. From the fits, we determine an upper bound for the energy density for Pb-Pb collisions at LHC energies of √sNN = 2.76 TeV per nucleon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Miller, Michael L., Klaus Reygers, Stephen J. Sanders und Peter Steinberg. „Glauber Modeling in High-Energy Nuclear Collisions“. Annual Review of Nuclear and Particle Science 57, Nr. 1 (November 2007): 205–43. http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Xu, Nu. „Partonic collectivity in high-energy nuclear collisions“. Journal of Physics: Conference Series 50 (01.11.2006): 243–50. http://dx.doi.org/10.1088/1742-6596/50/1/029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Polleri, Alberto. „Charmonium production in high-energy nuclear collisions“. European Physical Journal A 19, S1 (Februar 2004): 139–42. http://dx.doi.org/10.1140/epjad/s2004-03-022-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sano, Mitsuo, und Masamichi Wakai. „Hypernuclear Production in High-Energy Nuclear Collisions“. Progress of Theoretical Physics Supplement 117 (1994): 99–121. http://dx.doi.org/10.1143/ptps.117.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zhang, Ben-Wei, Guo-Yang Ma, Wei Dai, Sa Wang und Shan-Liang Zhang. „Jet tomography in high-energy nuclear collisions“. EPJ Web of Conferences 206 (2019): 04004. http://dx.doi.org/10.1051/epjconf/201920604004.

Der volle Inhalt der Quelle
Annotation:
When an energetic parton traversing the QCD medium, it may suffer multiple scatterings and lose energy. This jet quenching phenomenon may lead to the suppression of leading hadron productions as well as medium modifications of full jet observables in heavy-ion collisions. In this talk we discuss the nuclear modificationfactors and yield ratios of identified meson such as η, ρ0, φ, ω, and $ K_{\rm{S}}^0 $ as well as π meson at large pT in A+A collisions at the next to-leading order (NLO) with high-twist approach of parton energy loss. Then we discuss a newly developed formalism of combing NLO matrix elements and parton shower (PS) for initial hard production with parton energy loss in the QGP, and its application in investigating massivegauge boson(Z0/W±)tagged jet productions and b $ \bar {b} $ dijet correlations in Pb+Pb at the LHC.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Letessier, Jean, und Johann Rafelski. „Chemical nonequilibrium in high-energy nuclear collisions“. Journal of Physics G: Nuclear and Particle Physics 25, Nr. 2 (01.01.1999): 295–309. http://dx.doi.org/10.1088/0954-3899/25/2/018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Sano, M., und M. Wakai. „Hypernuclear Production in High-Energy Nuclear Collisions“. Progress of Theoretical Physics Supplement 117 (17.05.2013): 99–121. http://dx.doi.org/10.1143/ptp.117.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mrówczyński, Stanisław. „Chemical fluctuations in high-energy nuclear collisions“. Physics Letters B 459, Nr. 1-3 (Juli 1999): 13–20. http://dx.doi.org/10.1016/s0370-2693(99)00663-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Jia, Jiangyong. „Collective phenomena in high-energy nuclear collisions“. Nuclear Physics A 931 (November 2014): 216–26. http://dx.doi.org/10.1016/j.nuclphysa.2014.08.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Damjanovic, Sanja. „Thermal dileptons in high-energy nuclear collisions“. Progress in Particle and Nuclear Physics 62, Nr. 2 (April 2009): 486–91. http://dx.doi.org/10.1016/j.ppnp.2008.12.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Seibert, David. „“Intermittency” in high-energy and nuclear collisions“. Physics Letters B 240, Nr. 1-2 (April 1990): 215–18. http://dx.doi.org/10.1016/0370-2693(90)90436-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Chen, Shi-Yong, Ben-Wei Zhang und Enke Wang. „Jet charge in high-energy nuclear collisions“. Chinese Physics C 44, Nr. 2 (28.01.2020): 024103. http://dx.doi.org/10.1088/1674-1137/44/2/024103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nakayama, K., und G. Bertsch. „High energy photon production in nuclear collisions“. Physical Review C 34, Nr. 6 (01.12.1986): 2190–200. http://dx.doi.org/10.1103/physrevc.34.2190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Wakai, M., H. Band und M. Sano. „Hypernucleus formation in high-energy nuclear collisions“. Physical Review C 38, Nr. 2 (01.08.1988): 748–59. http://dx.doi.org/10.1103/physrevc.38.748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Schweda, Kai, und Nu Xu. „Partonic Collectivity in High-Energy Nuclear Collisions“. Acta Physica Hungarica A) Heavy Ion Physics 22, Nr. 1-2 (01.03.2005): 103–11. http://dx.doi.org/10.1556/aph.22.2005.1-2.11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bashir, Inam-ul, Rameez Ahmad Parra, Hamid Nanda und Saeed Uddin. „Energy Dependence of Particle Ratios in High Energy Nucleus-Nucleus Collisions: A USTFM Approach“. Advances in High Energy Physics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/9285759.

Der volle Inhalt der Quelle
Annotation:
We study the identified particle ratios produced at mid-rapidity (y<0.5) in heavy-ion collisions, along with their correlations with the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates the effects of both longitudinal and transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied. The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD predicted phase-transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place. The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Blažek, Mikuláš. „Multifractality in High Energy Collisions“. Fractals 05, Nr. 02 (Juni 1997): 309–20. http://dx.doi.org/10.1142/s0218348x97000292.

Der volle Inhalt der Quelle
Annotation:
With increasing energy of nuclear collisions, several statistical distributions of produced particles show changes in shape. This also concerns the scaling indices which characterize multifractality in the observed particle density distributions. In the present contribution, the self-similar processes governing that multifractality are described in more detail. It is shown especially that the corresponding extended fundamental equation reproduces, with very good accuracy, the data resulting from the oxygen beam at 60 and 200 A GeV colliding with the emulsion nuclei. The approximate description of the quantities characterizing scaling properties near the quark-gluon phase transition is discussed too.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Durand, Dominique. „Nuclear matter from nuclear collisions“. Nuclear Physics A 654, Nr. 1-2 (Juli 1999): C273—C293. http://dx.doi.org/10.1016/s0375-9474(99)00258-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

A. Trainor, Thomas. „Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions“. EPJ Web of Conferences 172 (2018): 05004. http://dx.doi.org/10.1051/epjconf/201817205004.

Der volle Inhalt der Quelle
Annotation:
Collectivity, as interpreted to mean flow of a dense medium in high-energy A-A collisions described by hydrodynamics, has been attributed to smaller collision systems – p-A and even p-p collisions – based on recent analysis of LHC data. However, alternative methods reveal that some data features attributed to flows are actually manifestations of minimum-bias (MB) jets. In this presentation I review the differential structure of single-particle pt spectra from SPS to LHC energies in the context of a two-component (soft + hard) model (TCM) of hadron production. I relate the spectrum hard component to measured properties of isolated jets. I use the spectrum TCM to predict accurately the systematics of ensemble-mean p̅t in p-p, p-A and A-A collision systems over a large energy interval. Detailed comparisons of the TCM with spectrum and correlation data suggest that MB jets play a dominant role in hadron production near midrapidity. Claimed flow phenomena are better explained as jet manifestations agreeing quantitatively with measured jet properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

XU, NU. „PARTONIC EQUATION OF STATE IN HIGH-ENERGY NUCLEAR COLLISIONS“. International Journal of Modern Physics E 16, Nr. 03 (April 2007): 715–27. http://dx.doi.org/10.1142/s0218301307006228.

Der volle Inhalt der Quelle
Annotation:
After a brief introduction to the physics of high-energy nuclear collisions, we will present recent experimental results that are closely connected to the properties of the matter produced in Au + Au collisions at RHIC. Collective motion with parton degrees of freedom is called partonic collectivity. We will focus on collective observables such as transverse radial flow and elliptic flow. With experimental observations, we will demonstrate that collectivity is developed prior to the hadronic stage in heavy ion collisions at RHIC.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

STOCK, REINHARD. „HADRON FORMATION IN HIGH ENERGY ELEMENTARY AND NUCLEAR COLLISIONS“. International Journal of Modern Physics E 16, Nr. 03 (April 2007): 687–714. http://dx.doi.org/10.1142/s0218301307006216.

Der volle Inhalt der Quelle
Annotation:
We consider the dynamical origin of the apparent statistical equilibrium that governs the yields, and yield ratios, of all hadron and resonance species (consisting of the three light quark flavours) produced in nucleus-nucleus collisions from AGS via SPS to RHIC energies [Formula: see text]. This hadro-chemical equilibrium state is well described, overall, by the grand canonical, quasi-classical Gibbs ensemble of all corresponding hadrons and resonances. In order to pin down the stochastic elements, featured by the dynamical evolution prior to hadron formation and hadronic "chemical" (i.e. species) freeze-out, and determining the eventual equilibrium state, we concentrate on the high energy domain, [Formula: see text], where a model of primordial perturbative QCD partonic shower evolution appears plausible. For guidance concerning a hadronization model we revisit the QCD description of jet-induced hadron formation in e+e- annihilation at LEP energy. At the end of the pQCD partonic shower evolution a stage of color neutralization and flavour recombination leads to transition into non perturbative QCD clusters or strings, that decay to hadrons/resonances under phase space dominance. The combination of stochastic shower multiplication and cluster decay to the phase space defined by the hadron/resonancemass and spin spectrum results in a hadronization output featuring statistical equilibrium of the species, which is well described by the canonical Gibbs ensemble. We then assume that hadronization in A + A collisions occurs from a similar stage of singlet cluster formation. However, owing to the extreme overall energy density these clusters should overlap spatially, giving rise to extended super-cluster formation, increasing with [Formula: see text], A and collision centrality. In the limit of an extended volume decaying coherently, hadronization is free of local quantum number conservation constraints. This leads to strangeness enhancement and explains the success of a grand canonical description.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ray, Amlan. „Nuclear Orbiting At Low Energy Nuclear Collisions“. Nuclear Physics A 787, Nr. 1-4 (Mai 2007): 499–506. http://dx.doi.org/10.1016/j.nuclphysa.2006.12.077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Arleo, François, und Stéphane Peigné. „Quarkonium Suppression from Coherent Energy Loss in Fixed-Target Experiments Using LHC Beams“. Advances in High Energy Physics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/961951.

Der volle Inhalt der Quelle
Annotation:
Quarkonium production in proton-nucleus collisions is a powerful tool to disentangle cold nuclear matter effects. A model based on coherent energy loss is able to explain the available quarkonium suppression data in a broad range of rapidities, from fixed-target to collider energies, suggesting coherent energy loss in cold nuclear matter to be the dominant effect in quarkonium suppression in p-A collisions. This could be further tested in a high-energy fixed-target experiment using a proton or nucleus beam. The nuclear modification factors ofJ/ψandΥas a function of rapidity are computed in p-A collisions ats=114.6 GeV, and in p-Pb and Pb-Pb collisions ats=72 GeV. These center-of-mass energies correspond to the collision on fixed-target nuclei of 7 TeV protons and 2.76 TeV (per nucleon) lead nuclei available at the LHC.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lavagno, A., D. Pigato und G. Gervino. „Thermodynamic instabilities in high energy heavy-ion collisions“. Modern Physics Letters B 29, Nr. 18 (10.07.2015): 1550092. http://dx.doi.org/10.1142/s021798491550092x.

Der volle Inhalt der Quelle
Annotation:
One of the very interesting aspects of high energy heavy-ion collisions experiments is a detailed study of the thermodynamical properties of strongly interacting nuclear matter away from the nuclear ground state. In this direction, many efforts were focused on searching for possible phase transitions in such collisions. We investigate thermodynamic instabilities in a hot and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated [Formula: see text]-matter can take place. Such a phase transition can be characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the strangeness concentration) in asymmetric nuclear matter. In analogy with the liquid–gas nuclear phase transition, hadronic phases with different values of antibaryon–baryon ratios and strangeness content may coexist. Such a physical regime could be, in principle, investigated in the future high-energy compressed nuclear matter experiments which will make it possible to create compressed baryonic matter with a high net baryon density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhao, Hai-Fu, Bao-Chun Li und Hong-Wei Dong. „Investigation of Particle Distributions in Xe-Xe Collision at sNN=5.44 TeV with the Tsallis Statistics“. Advances in High Energy Physics 2020 (11.02.2020): 1–6. http://dx.doi.org/10.1155/2020/3724761.

Der volle Inhalt der Quelle
Annotation:
The distribution characteristic of final-state particles is one of the significant parts in high-energy nuclear collisions. The transverse momentum distribution of charged particles carries essential evolution information about the collision system. The Tsallis statistics is used to investigate the transverse momentum distribution of charged particles produced in Xe-Xe collisions at sNN=5.44 TeV. On this basis, we reproduce the nuclear modification factor of the charged particles. The calculated results agree approximately with the experimental data measured by the ALICE Collaboration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gyulassy, M., V. Topor Pop und S. E. Vance. „Baryon number transport in high-energy nuclear collisions“. Acta Physica Hungarica A) Heavy Ion Physics 5, Nr. 3 (Juni 1997): 299–318. http://dx.doi.org/10.1007/bf03053659.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Carruthers, P., H. C. Eggers und Ina Sarcevic. „Correlations and intermittency in high-energy nuclear collisions“. Physical Review C 44, Nr. 4 (01.10.1991): 1629–35. http://dx.doi.org/10.1103/physrevc.44.1629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Seibert, David, und George Fai. „Heavy-resonance production in high-energy nuclear collisions“. Physical Review C 50, Nr. 5 (01.11.1994): 2532–39. http://dx.doi.org/10.1103/physrevc.50.2532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Neumann, John J., David Seibert und George Fai. „Thermal photon production in high-energy nuclear collisions“. Physical Review C 51, Nr. 3 (01.03.1995): 1460–64. http://dx.doi.org/10.1103/physrevc.51.1460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Baym, Gordon, B. Blättel, L. L. Frankfurt, H. Heiselberg und M. Strikman. „Correlations and fluctuations in high-energy nuclear collisions“. Physical Review C 52, Nr. 3 (01.09.1995): 1604–17. http://dx.doi.org/10.1103/physrevc.52.1604.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Seibert, David. „Quark-matter droplets in high-energy nuclear collisions“. Physical Review Letters 63, Nr. 2 (10.07.1989): 136–38. http://dx.doi.org/10.1103/physrevlett.63.136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Rapp, Ralf. „π+π− emission in high-energy nuclear collisions“. Nuclear Physics A 725 (September 2003): 254–68. http://dx.doi.org/10.1016/s0375-9474(03)01581-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wakai, M., H. Bandō und M. Sano. „Mesonic atom production in high-energy nuclear collisions“. Zeitschrift für Physik A Atomic Nuclei 333, Nr. 2 (Juni 1989): 213–18. http://dx.doi.org/10.1007/bf01565153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Wong, S. M. H. „Quantifying baryon stopping in high energy nuclear collisions“. Physics Letters B 480, Nr. 1-2 (Mai 2000): 65–70. http://dx.doi.org/10.1016/s0370-2693(00)00408-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zhang, Ben-Wei. „Full jet tomography of high-energy nuclear collisions“. Nuclear Physics A 855, Nr. 1 (April 2011): 52–59. http://dx.doi.org/10.1016/j.nuclphysa.2011.02.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Nadeau, Hendrickje. „Photon emission from very high energy nuclear collisions“. Physical Review D 48, Nr. 7 (01.10.1993): 3182–89. http://dx.doi.org/10.1103/physrevd.48.3182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie