Auswahl der wissenschaftlichen Literatur zum Thema „High-charge electron beams“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "High-charge electron beams" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "High-charge electron beams"

1

Maitrallain, A., E. Brunetti, M. J. V. Streeter, B. Kettle, R. Spesyvtsev, G. Vieux, M. Shahzad et al. „Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator“. New Journal of Physics 24, Nr. 1 (01.01.2022): 013017. http://dx.doi.org/10.1088/1367-2630/ac3efd.

Der volle Inhalt der Quelle
Annotation:
Abstract Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hwang, D. M., Y. A. Tkachenko und J. C. M. Hwang. „High-resolution charge collection microscopy with high-voltage electron beams“. Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 954–55. http://dx.doi.org/10.1017/s0424820100172504.

Der volle Inhalt der Quelle
Annotation:
Electron-beam-induced-current (EBIC) microscopy has the unique capability of simultaneously providing structural and transport characteristics of semiconductors. However, EBIC is traditionally performed inside an SEM with less than 40 keV electron beam energy. As the result, the applications of traditional EBIC for semiconductor device characterization are limited by either probing depth (0.02 ~0.05 μm with 2 ~5 keV electron beams) or spatial resolution (1-2 um with 20 ~40 keV electron beams). To achieve useful resolution for studying the interface effects critical to today's submicron devices, one would have to prepare the samples by either removing the passivation/metallization layers or making cross sections. In this paper, we report a breakthrough in the art of EBIC using high-voltage electron beams (200 keV and higher) to improve the spatial resolution and probing depth simultaneously. Adopting a JEOL 4000FX AEM for EBIC imaging, a spatial resolution of 0.05 um was demonstrated from structures 0.5 um beneath the surface. Using this technique, we have identified a facet degradation mechanism in strained quantum well laser diodes and hot-electroninduced defects in GaAs metal-semiconductor field-effect transistors (MESFETs).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

DEVYATKOV, V. N., N. N. KOVAL, P. M. SCHANIN, V. P. GRIGORYEV und T. V. KOVAL. „Generation and propagation of high-current low-energy electron beams“. Laser and Particle Beams 21, Nr. 2 (April 2003): 243–48. http://dx.doi.org/10.1017/s026303460321212x.

Der volle Inhalt der Quelle
Annotation:
High-current electron beams with a current density of up to 100 A/cm2 generated by a plasma-cathode gas-filled diode at low accelerating voltages are studied. Two types of gas discharges are used to produce plasma in the cathode. With glow and arc discharges, beam currents of up to 150 A and 400 A, respectively, have been obtained at an accelerating voltage of 16 kV and at a pressure of 1–3·10−2 Pa in the acceleration gap. The ions resulting from ionization of gas molecules by electrons of the beam neutralize the beam charge. The charge-neutralized electron beam almost without losses is transported over a distance of 30 cm in a drift channel which is in the axial magnetic field induced by Helmholtz coils. The results of calculations for the motion of electrons of the charge-neutralized beam with and without axial external field are presented and compared with those of experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hue, Céline S., Yang Wan, Eitan Y. Levine und Victor Malka. „Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators“. Matter and Radiation at Extremes 8, Nr. 2 (01.03.2023): 024401. http://dx.doi.org/10.1063/5.0126293.

Der volle Inhalt der Quelle
Annotation:
Density downramp injection has been demonstrated to be an elegant and efficient approach for generating high-quality electron beams in laser wakefield accelerators. Recent studies have demonstrated the possibilities of generating electron beams with charges ranging from tens to hundreds of picocoulombs while maintaining good beam quality. However, the plasma and laser parameters in these studies have been limited to specific ranges or attention has been focused on separate physical processes such as beam loading, which affects the uniformity of the accelerating field and thus the energy spread of the trapped electrons, the repulsive force from the rear spike of the bubble, which reduces the transverse momentum p⊥ of the trapped electrons and results in small beam emittance, and the laser evolution when traveling in the plasma. In this work, we present a comprehensive numerical study of downramp injection in the laser wakefield, and we demonstrate that the current profile of the injected electron beam is directly correlated with the density transition parameters, which further affects the beam charge and energy evolution. By fine-tuning the plasma density parameters, electron beams with high charge (up to several hundreds of picocoulombs) and low energy spread (around 1% FWHM) can be obtained. All these results are supported by large-scale quasi-three-dimensional particle-in-cell simulations. We anticipate that the electron beams with tunable beam properties generated using this approach will be suitable for a wide range of applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Niu, K., P. Mulser und L. Drska. „Beam generations of three kinds of charged particles“. Laser and Particle Beams 9, Nr. 1 (März 1991): 149–65. http://dx.doi.org/10.1017/s0263034600002391.

Der volle Inhalt der Quelle
Annotation:
Analyses are given for beam generations of three kinds of charged particles: electrons, light ions, and heavy ions. The electron beam oscillates in a dense plasma irradiated by a strong laser light. When the frequency of laser light is high and its intensity is large, the acceleration of oscillating electrons becomes large and the electrons radiate electromagnetic waves. As the reaction, the electrons feel a damping force, whose effect on oscillating electron motion is investigated first. Second, the electron beam induces the strong electromagnetic field by its self-induced electric current density when the electron number density is high. The induced electric field reduces the oscillation motion and deforms the beam.In the case of a light ion beam, the electrostatic field, induced by the beam charge, as well as the electromagnetic field, induced by the beam current, affects the beam motion. The total energy of the magnetic field surrounding the beam is rather small in comparison with its kinetic energy.In the case of heavy ion beams the beam charge at the leading edge is much smaller in comparison with the case of light ion beams when the heavy ion beam propagates in the background plasma. Thus, the induced electrostatic and electromagnetic fields do not much affect the beam propagation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ma, Yong, Jiarui Zhao, Yifei Li, Dazhang Li, Liming Chen, Jianxun Liu, Stephen J. D. Dann et al. „Ultrahigh-charge electron beams from laser-irradiated solid surface“. Proceedings of the National Academy of Sciences 115, Nr. 27 (18.06.2018): 6980–85. http://dx.doi.org/10.1073/pnas.1800668115.

Der volle Inhalt der Quelle
Annotation:
Compact acceleration of a tightly collimated relativistic electron beam with high charge from a laser–plasma interaction has many unique applications. However, currently the well-known schemes, including laser wakefield acceleration from gases and vacuum laser acceleration from solids, often produce electron beams either with low charge or with large divergence angles. In this work, we report the generation of highly collimated electron beams with a divergence angle of a few degrees, nonthermal spectra peaked at the megaelectronvolt level, and extremely high charge (∼100 nC) via a powerful subpicosecond laser pulse interacting with a solid target in grazing incidence. Particle-in-cell simulations illustrate a direct laser acceleration scenario, in which the self-filamentation is triggered in a large-scale near–critical-density plasma and electron bunches are accelerated periodically and collimated by the ultraintense electromagnetic field. The energy density of such electron beams in high-Z materials reaches to ∼1012 J/m3, making it a promising tool to drive warm or even hot dense matter states.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lai, P. W., K. N. Liu, D. K. Tran, S. W. Chou, H. H. Chu, S. H. Chen, J. Wang und M. W. Lin. „Laser wakefield acceleration of 10-MeV-scale electrons driven by 1-TW multi-cycle laser pulses in a sub-millimeter nitrogen gas cell“. Physics of Plasmas 30, Nr. 1 (Januar 2023): 010703. http://dx.doi.org/10.1063/5.0131155.

Der volle Inhalt der Quelle
Annotation:
By focusing conventional 1-TW 40-fs laser pulses into a dense 450- μm-long nitrogen gas cell, we demonstrate the feasibility of routinely generating electron beams from laser wakefield acceleration (LWFA) with primary energies scaling up to 10 MeV and a high charge in excess of 50 pC. When electron beams are generated with a charge of ≈30 pC and a beam divergence of ≈40 mrad from the nitrogen cell having a peak atom density of [Formula: see text] cm−3, increasing the density inside the cell by 25%—controlled by tuning the backing pressure of fed nitrogen gas—can induce defocusing of the pump pulse that leads to a twofold increase in the output charge but with a trade-off in beam divergence. Therefore, this LWFA scheme has two preferred regimes for acquiring electron beams with either lower divergence or higher beam charge depending on a slight variation of the gas/plasma density inside the cell. Our results identify the high potential for implementing sub-millimeter nitrogen gas cells in the future development of high-repetition-rate LWFA driven by sub-TW or few-TW laser pulses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Metel, Alexander, Enver Mustafaev, Yury Melnik und Khaled Hamdy. „Generation of Electron and Fast Atom Beams by a Grid Immersed in Plasma“. EPJ Web of Conferences 248 (2021): 04001. http://dx.doi.org/10.1051/epjconf/202124804001.

Der volle Inhalt der Quelle
Annotation:
We present a new method of product processing with beams of accelerated electrons and fast neutral atoms, which are generated by an immersed in plasma grid under a high negative voltage of 5 kV. The electrons appear due to secondary emission from the grid surface provoked by its bombardment with ions accelerated from the plasma. At the gas pressure not exceeding 0.1 Pa the ions with energy of 5 keV reach the grid without collisions in the space charge sheaths near its surface and their current in the grid circuit is by 2-3 times lower than the electron current. At higher pressures accelerated ions due to charge exchange collisions in the sheaths turn into fast neutral atoms leaving the sheaths and forming the beams. With the pressure increasing, the electron beam current diminishes and the current of fast atom beam grows.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lapierre, A., H. J. Son, R. Ringle, S. Schwarz und A. C. C. Villari. „High-Current Capability and Upgrades of the EBIS/T Charge-Breeding System in the Reaccelerator at the Facility for Rare-Isotope Beams“. Journal of Physics: Conference Series 2743, Nr. 1 (01.05.2024): 012063. http://dx.doi.org/10.1088/1742-6596/2743/1/012063.

Der volle Inhalt der Quelle
Annotation:
Abstract The Reaccelerator (ReA) of the Facility for Rare-Isotope Beams (FRIB) at Michigan State University uses a Beam Cooler/Buncher (BCB) and an Electron-Beam Ion Trap (EBIT) as a charge-breeding injector system. The rare isotopes produced by In-flight Separation are selected by the Advanced Rare Isotope Separator (ARIS) and stopped in a helium gas cell. Long-lived and stable-isotope beams can also be extracted from a Batch-Mode Ion Source (BMIS). The continuous beams transported at low energy to ReA are injected into the BCB. The pulsed beams are then injected into the EBIT, charge bred, ejected, and accelerated by ReA’s LINAC. The EBIT electron current (300 - 600 mA) is a factor that limits its capacity to ∼2×1010 elementary charges, which restricts the maximum EBIT-extracted rates to less than 2×1010 particles per second for light ions. An upgrade of the EBIT electron gun is expected to provide 2 A in current. In parallel, a High-Current Electron-Beam Ion Source (HCEBIS) is being commissioned. The HCEBIS can presently provide an electron current of 2 A. An upgrade will increase the current to 4 A. The implementation of these two upgrades is expected to allow for maximum rates to be ∼1011 pps, compatible with FRIB projected rates and user demands. We review the high-current capabilities and upgrades of ReA’s charge-breeding system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Son, Hyock-Jun, Alain Lapierre, Stefan Schwarz und Antonio C. C. Villari. „Status of the High-Current Electron-Beam Ion Source Charge Breeder for the Facility for Rare-Isotope Beams“. Journal of Physics: Conference Series 2743, Nr. 1 (01.05.2024): 012046. http://dx.doi.org/10.1088/1742-6596/2743/1/012046.

Der volle Inhalt der Quelle
Annotation:
Abstract The Reaccelerator (ReA) of the Facility for Rare-Isotope Beams (FRIB) employs an Electron-Beam Ion Trap (EBIT) as a charge breeder to reaccelerate rare-isotope beams up to 12 MeV/u. The ReA EBIT produces an electron current of 300 – 600 mA. The maximum trap capacity of the ReA EBIT is 1010 elementary charges. FRIB production rates are expected to exceed 1010 particles/s in some cases in the future. There is also a user demand for reaccelerated stable-isotope beams of more than 1010 pps. To handle these rates and provide redundancy, a High Current Electron-Beam Ion Source (HCEBIS) has been built and is now being commissioned. An electron-beam current of 2 A with a 50 % duty cycle has been transported through a 4-T field. An upcoming upgrade to increase the electron-beam current up to 4 A will allow for a maximum trap capacity of 2.4×1011 elementary charges. We present the status of the HCEBIS, including the results of the electron-beam commissioning and systematic studies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "High-charge electron beams"

1

Paroli, B. „THOMSON BACKSCATTERING DIAGNOSTICS OF NANOSECOND ELECTRON BUNCHES IN HIGH SPACE CHARGE REGIME“. Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/170627.

Der volle Inhalt der Quelle
Annotation:
The intra-beam repulsions play a significant role in determining the performances of free-electron devices when an high brilliance of the beam is required. The transversal and longitudinal spread of the beam, its energy and density are fundamental parameters in any beam experiment and different beam diagnostics are available to measure such parameters. A diagnostic method based on the Thomson backscattering of a laser beam impinging on the particle beam is proposed in this work for the study of nanosecond electron bunches in high space charge regime. This diagnostics, aimed to the measurement of density, energy and energy spread, was set-up in a Malmberg-Penning trap (generally used for the electron/ion confinment) in two different configurations designed to optimize sensitivity, spatial resolution and electron-beam coincidence in space and time. To this purpose an electron bunch (pulse time <4 ns), produced by a photocathode source, was preliminary characterized with different electrostatic diagnostics and used to test the diagnostics systems. The solutions are detailed, which were devised for both the laser and bunch injection in the vacuum chamber, space and time coincidence of electron and laser pulses, photon detection, optimization of the geometry in the laser-beam interaction. The results are then summarized with an estimate of the minimum sensitivity of the set-up.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gillingham, David R. „Self-consistent simulation of radiation and space-charge in high-brightness relativistic electron beams“. College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7213.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Martelli, Lorenzo. „Average Current Enhancement of Laser-Plasma Accelerators for Industrial Applications“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE012.

Der volle Inhalt der Quelle
Annotation:
Cette thèse de doctorat s'inscrit dans le cadre d'une collaboration CIFRE entre Thales-MIS et le Laboratoire d'Optique Appliquée (LOA). L'objectif principal est d'améliorer le courant moyen des accélérateurs laser-plasma à faible énergie, notamment dans la gamme de quelques MeV. Cette avancée revêt un intérêt particulier pour les applications à faible énergie telles que la tomographie industrielle par rayons X, ne nécessitant pas de faisceaux d'électrons monoénergétiques.Des expériences ont été menées au moyen du système laser de 60 TW installé dans la Salle Jaune du LOA, capable de générer des impulsions de 30 fs. À travers une exploration minutieuse des densités de plasma, des énergies laser, des cibles gazeuses et des degrés de focalisation, nous avons identifié les conditions propices à la production de faisceaux d'électrons hautement divergents (i.e., >100 mrad) de quelques MeV, avec des charges variant de 5 à 30 nC. Nous avons également atteint une efficacité maximale de conversion d'énergie laser-électron d'environ 14 %, parmi les plus élevées jamais mesurées. En envisageant les futurs systèmes laser capables d'atteindre des puissances moyennes d'environ 100 W, ces configurations pourraient ouvrir la voie à la réalisation de faisceaux d'électrons accélérés par laser-plasma, avec des courants moyens dépassant 1 microampère, surpassant ainsi l'état de l'art actuel des accélérateurs laser-plasma. Pour mener à bien ces expériences novatrices, nous avons conçu une buse supersonique en verre et des dipôles magnétiques permanents permettant de dévier les électrons vers des écrans scintillants pour effectuer la spectrométrie des faisceaux produits. Parallèlement aux expériences, cette thèse a également approfondi les simulations Particle-In-Cell (PIC) pour étudier les mécanismes d'accélération. Grâce à un outil numérique spécifiquement développé pour traiter les résultats des simulations PIC, nous avons démontré que la force pondéromotrice du laser joue un rôle prépondérant dans l'accélération des électrons. Notamment, la majorité des particules ne sont pas injectées dans les ondes du plasma, mais glissent plutôt sur l'impulsion laser, acquérant ainsi une faible énergie de l'ordre de quelques MeV
This doctoral thesis is part of a CIFRE collaboration between Thales-MIS and the Laboratoire d'Optique Appliquée (LOA). The main objective is to enhance the average current of low-energy laser-plasma accelerators, particularly in the range of a few MeV. This advancement is particularly interesting for low-energy applications such as industrial X-ray tomography, which does not require monoenergetic electron beams.Experiments were conducted using the 60,TW laser system installed in the Salle Jaune at LOA, capable of generating 30 fs pulses. Through meticulous exploration of plasma densities, laser energies, gas targets, and focusing degrees, we identified conditions conducive to producing highly divergent electron beams (i.e., >100 mrad) at energies of a few MeV, with charges ranging from 5 to 30 nC. We also achieved a maximum laser-to-electron energy conversion efficiency of approximately 14 %, one of the highest ever measured. Looking ahead to future laser systems capable of achieving average powers of around 100 W, these configurations could pave the way for generating laser-plasma accelerated electron beams with average currents exceeding 1 microampere, surpassing the current state of the art in laser-plasma accelerators. To facilitate these innovative experiments, we designed a supersonic glass nozzle and permanent magnetic dipoles to deflect electrons towards scintillating screens for beam spectroscopy. Concurrently with the experiments, this thesis also delved into Particle-In-Cell (PIC) simulations to study acceleration mechanisms. Using a dedicated numerical tool for processing PIC simulation results, we demonstrated that the ponderomotive force of the laser plays a predominant role in electron acceleration. Notably, the majority of particles are not injected into plasma waves but rather slide along the laser pulse, thereby gaining low energies on the order of a few MeV
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Capra, S. „DEVELOPMENT AND CHARACTERIZATION OF AN INNOVATIVE LOW-NOISE HIGH-DYNAMIC-RANGE VLSI CHARGE-SENSITIVE PREAMPLIFIER FOR SOLID-STATE DETECTORS EMPLOYED IN NUCLEAR PHYSICS EXPERIMENTS WITH RADIOACTIVE ION BEAMS“. Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/359111.

Der volle Inhalt der Quelle
Annotation:
The latest experimental results of the multichannel front-end ASIC of TRACE are shown. The device submitted to the foundry in the middle of 2014 and received at the end of the same year has been installed on a dedicated PCB and tested using a pulser. We then designed and realized a preamplifier board with eight ASICs for a total of 32 front channels and one back channel. We connected it to a highly-segmented planar silicon detector and acquired the spectrum of a 241Am-244Cm-239Pu triple alpha source obtaining an overall resolution around 3.5‰. The chip comprises four channels specifically designed for hole signals and one channel for electron signals. The power consumption is around 10 mW per channel as required by the specifications of TRACE. The main design goals are low noise and fast rise time. With proper shaping of the signals this device is capable of producing energy spectra with resolution of approximatively 1 keV. An innovative circuit architecture based on a Time-Over-Threshold technique boosts the dynamic range of the CSP by more than one order of magnitude. The rise time of the leading edge of the signals is fast enough to perform pulse-shape analysis of the waveforms. A peculiar feature of this device is the possibility to easily adjust a host of key parameters through an I2C bus. The bandwidth and sensitivity of the preamplifier can so be optimized according to the experimental needs on a case-by-case basis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kosmata, Marcel. „Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-84041.

Der volle Inhalt der Quelle
Annotation:
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert
In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zarini, Omid. „Measuring sub-femtosecond temporal structures in multi-ten kiloampere electron beams“. 2019. https://hzdr.qucosa.de/id/qucosa%3A33977.

Der volle Inhalt der Quelle
Annotation:
In laser wakefield acceleration, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m. This scheme advances a novel concept for compact and less expensive electron accelerators, which can be hosted in a typical university size laboratory. Furthermore, laser wakefield accelerators (LWFA) feature unique electron bunch characteristics, namely micrometer size with duration ranging from several fs to tens of fs. Precise knowledge of the longitudinal profile of such ultra-short electron bunches is essential for the design of future table-top X-ray light-sources and remains a big challenge due to the resolution limit of existing diagnostic techniques. Spectral measurement of broadband coherent and incoherent transition radiation (TR) produced when electron bunches passing through a metal foil is a promising way to analyze longitudinal characteristics of these bunches. Due to the limited reproducibility of the electron source this measurement highly requires single-shot capability. An ultra-broadband spectrometer combines the TR spectrum in UV/NIR (200-1000 nm), NIR (0.9-1.7 µm) and mid-IR (1.6-12 µm). A high spectral sensitivity, dynamic bandwidth and spectral resolution are realized by three optimized dispersion and detection systems integrated into a single-shot spectrometer. A complete characterization and calibration of the spectrometer have been done concerning wavelengths, relative spectral sensitivities, and absolute photometric sensitivities, also taking into account for the light polarization. The TR spectrometer is able to characterize electron bunches with charges as low as 1pC and can resolve time-scales of 0.4 fs. Electron bunches up to 16 fs (rms width) can be reconstructed from their TR spectrum. In the presented work, the self-truncated ionization induced injection (STII) scheme has been explored to study the relevant beam parameters especially its longitudinal bunch profile and the resulting peak current.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Köhler, Alexander. „Transverse electron beam dynamics in the beam loading regime“. 2019. https://hzdr.qucosa.de/id/qucosa%3A34393.

Der volle Inhalt der Quelle
Annotation:
GeV electron bunches accelerated on a centimeter scale device exemplify the extraordinary advances of laser-plasma acceleration. The combination of high charges from optimized injection schemes and intrinsic femtosecond short bunch duration yields kiloampere peak currents. Further enhancing the current while reducing the energy spread will pave the way for future application, e.g. the driver for compact secondary radiation sources such as high-field THz, high-brightness x-ray or gamma-ray sources. One essential key for beam transport to a specific application is an electron bunch with high quality beam parameters such as low energy spread as well as small divergence and spot size. The inherent micrometer size at the plasma exit is typically sufficient for an efficient coupling into a conventional beamline. However, energy spread and beam divergence require optimization before the beam can be transported efficiently. Induced by the high peak current, the beam loading regime can be used in order to achieve optimized beam parameters for beam transport.
In this thesis, the impact of beam loading on the transverse electron dynamic is systematically studied by investigating betatron radiation and electron beam divergence. For this reason, the bubble regime with self-truncated ionization injection (STII) is applied to set up a nanocoulomb-class laser wakefield accelerator. The accelerator is driven by 150TW laser pulses from the DRACO high power laser system. A supersonic gas jet provides a 3mm long acceleration medium with electron densities from 3 × 10^18 cm^−3 to 5 × 10^18 cm^−3. The STII scheme together with the employed setup yields highly reproducible injections with bunch charges of up to 0.5 nC. The recorded betatron radius at the accelerator exit is about one micron and reveals that the beam size stays at the same value. The optimal beam loading, which is observed at around 250 pC to 300 pC, leads to the minimum energy spread of ~40MeV and a 20% smaller divergence. It is demonstrated that an incomplete betatron phase mixing due to the small energy spread can explain the experimentally observed minimum beam divergence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Froese, Michael Wayne. „The TITAN electron beam ion trap: assembly, characterization, and first tests“. Thesis, 2006. http://hdl.handle.net/1993/288.

Der volle Inhalt der Quelle
Annotation:
The precision of mass measurements in a Penning trap is directly proportional to an ion's charge state and can be increased by using highly charged ions (HCI) from an Electron Beam Ion Trap (EBIT). By bombarding the injected and trapped singly charged ions with an intense electron beam, the charge state of the ions is rapidly increased. To use this method for short-lived isotopes, very high electron beam current densities are required of the TITAN EBIT, built and commissioned at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany and transported to TRIUMF for the TITAN on-line facility. This EBIT has produced charge states as high as Kr34+ and Ba54+ with electron beams of up to 500 mA and 27 keV. Once the EBIT is operational at full capacity (5 A, 60 keV), most species can be bred into a He-like configuration within tens of ms.
October 2006
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Suendorf, Martin. „Investigation of the growth process of thin iron oxide films: Analysis of X-ray Photoemission Spectra by Charge Transfer Multiplet calculations“. Doctoral thesis, 2012. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2012121910580.

Der volle Inhalt der Quelle
Annotation:
Thin metallic films with magnetic properties like magnetite are an interesting material in current technological applications. In the presented work the iron oxide films are grown by molecular beam epitaxy on MgO(001) substrates at temperatures between room temperature and 600K. The film and surface structure are investigated by x-ray reflectometry (XRR), x-ray diffraction (XRD) and low energy electron diffraction (LEED). The chemical properties are investigated by x-ray photoelectron spectroscopy (XPS). Furthermore, charge transfer multiplet (CTM) calculations are performed as a means to gain additional information from photoemission spectra. It is shown that only for temperatures higher than 500K the oxide film forms a spinel structure. A previously unobserved (2x1) surface reconstruction in two orthogonal domains is found for various preparation conditions. The application of CTMs results in good quantitative and qualitative agreement to other methods for the determination of the film stoichiometry. In addition CTMs can well describe the segregation of Mg atoms into the oxide film either during film growth or during film annealing. It is found that initially Mg substitutes Fe on all possible lattice sites, only for prolonged treatment at high temperature do Mg atoms favour the octahedral lattice sites of divalent Fe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kosmata, Marcel. „Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung“. Doctoral thesis, 2011. https://tud.qucosa.de/id/qucosa%3A25920.

Der volle Inhalt der Quelle
Annotation:
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert.
In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "High-charge electron beams"

1

Minty, Michiko G., und Frank Zimmermann. „Beam Manipulations in Photoinjectors“. In Particle Acceleration and Detection, 133–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_5.

Der volle Inhalt der Quelle
Annotation:
AbstractThe design of an electron source is a challenging task. The designer must reconcile the contradictory requirements for a small emittances, a high charge, a high repetition rate, and, possibly, a high degree of beam polarization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Froese, M., G. Gwinner, C. Champagne, A. Lapierre, J. Pfister, G. Sikler, J. Dilling, J. R. Crespo López-Urrutia, S. Epp und J. Ullrich. „A high-current electron beam ion trap as an on-line charge breeder for the high precision mass measurement TITAN experiment“. In TCP 2006, 241–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73466-6_31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Close, Frank. „The heart of the matter“. In Particle Physics: A Very Short Introduction, 35–47. 2. Aufl. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/actrade/9780192873750.003.0004.

Der volle Inhalt der Quelle
Annotation:
Abstract This chapter focuses on the roles, masses, and properties of quarks, electrons, and radioactivity in making life. It notes the discovery of atomic structure, protons, and quarks as a result of scattering beams of high-energy particles. Three quarks, which have different electrical charges, clustered together are sufficient to make a proton or a neutron. The neutron has no electrical charge overall, but its quarks give it a magnetic moment. Electric charge is preserved in the beta decay of a neutron as the proton has one unit positive, counterbalancing the negative electron. The chapter also looks into the occurrence of quarks and electrons in mirror form through antiparticles, which are also the seeds of antimatter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Krishnan, Kannan M. „Probes: Sources and Their Interactions with Matter“. In Principles of Materials Characterization and Metrology, 277–344. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0005.

Der volle Inhalt der Quelle
Annotation:
Probes are generated using laboratory sources, or in large user facilities. Photon sources include incandescence and plasma discharge lamps. Electron beams are generated using thermionic or field-emission sources. RF plasma sources generate ions that are accelerated and used for scattering experiments. Specimens should be probed first with light, as it causes the least damage. Electron interaction with matter causes beam broadening, atomic displacements, sputtering, or radiolysis leading to mass loss and local contamination. Neutrons are heavier than electrons, penetrate more deeply in materials, and require more sample for analysis. Protons (positive charge, heavier than electrons) go a longer way in the specimen without significant broadening. Ions in solids undergo kinematic collisions with conservation of energy and momentum; they also lose energy continuously as they propagate. In the back-scattering geometry, they form important methods of Rutherford backscattering spectroscopy (RBS) and low-energy ion scattering spectroscopy (LEISS). Medium energy ions generate secondary ions by sputtering that can be analyzed by mass spectrometers to determine specimen composition (SIMS). Alternatively, its composition is analyzed (ICP-MS), by creating an aqueous dispersion and converting it to a plasma. Finally, interaction of high-energy ions with core electrons can lead to inner shell ionization and characteristic X-ray emission (PIXE).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hargittai, István. „Gas-phase electron diffraction“. In Accurate Molecular Structures, 95–125. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198555568.003.0005.

Der volle Inhalt der Quelle
Annotation:
Abstract The gas electron diffraction technique of molecular structure determination is based on the phenomenon that a beam of fast electrons is scattered by the potential from the charge distribution in the molecule. The resulting interference pattern depends on the molecular geometry, to wit the relative positions of the atomic nuclei and the intramolecular motion. Gas electron diffraction is one of the few experimental techniques able to determine molecular geometry in the vapor phase. The other principal technique is high-resolution (microwave and modern laser) spectroscopy, see Chapters 3 and 4. There are about 150 papers published per annum on gas electron diffraction structure analysis, theory, and methodological development. The Sektion für Spektren und Strukturdokumentation at the University of Ulm keeps a record of all relevant literature, compiles and disseminates a biannual newsletter and a catalog with structural data, and publishes a virtually complete annotated bibliography (Buck et al. 1981; Herde et al. 1985). A special value of the Ulm bibliographies is that they feature theoretical and methodological papers as well as reviews, technical reports, etc., in addition to the structural papers. Early structural data have been compiled by Sutton (1958, 1965), followed by two Landolt-Börnstein volumes (Callomon et al. 1976, 1987) providing coverage through to 1984.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "High-charge electron beams"

1

Gorlova, D. A., I. N. Tsymbalov, K. A. Ivanov, E. M. Starodubtseva und A. B. Savel’Ev. „Numerical study of a collimated high charge electron beam generation on laser systems with terawatt peak power“. In 2024 International Conference Laser Optics (ICLO), 195. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andreev, Andrey D., Edwin F. Guzman, Christopher Rodriquez und Edl Schamiloglu. „Experimental Measurements of Magnetically-Insulated Coaxial Diode's Space-Charge-Limited Electron-Beam Current, a.k.a. Fedosov Current, on the SINUS-6 High-Current Electron-Beam Accelerator at the University of New Mexico“. In 2024 Joint International Vacuum Electronics Conference and International Vacuum Electron Sources Conference (IVEC + IVESC), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/ivecivesc60838.2024.10694936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mazarakis, Michael G., J. W. Poukey, D. Rovang, S. Cordova, P. Pankuch, R. Wavrik, D. L. Smith et al. „High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode“. In Space charge dominated beams and applications of high brightness beams. AIP, 1996. http://dx.doi.org/10.1063/1.51099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wisniewski, E. E., C. Li, W. Gai und J. Power. „Generation of annular, high-charge electron beams at the Argonne wakefield accelerator“. In 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE. AIP Publishing LLC, 2012. http://dx.doi.org/10.1063/1.4788995.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Marrs, R. E., und D. R. Slaughter. „A high intensity electron beam ion trap for charge state boosting of radioactive ion beams“. In The fifteenth international conference on the application of accelerators in research and industry. AIP, 1999. http://dx.doi.org/10.1063/1.59151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Meziane, Mehdi, und PRad Collaboration. „High precision measurement of the proton charge radius: The PRad experiment“. In WORKSHOP TO EXPLORE PHYSICS OPPORTUNITIES WITH INTENSE, POLARIZED ELECTRON BEAMS AT 50-300 MEV. AIP, 2013. http://dx.doi.org/10.1063/1.4829405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tsymbalov, I. N., D. A. Gorlova, K. A. Ivanov und A. B. Savel'ev. „High-Charge Electron Beams Generation Due To Direct Laser Acceleration In Subcritical Plasma“. In Compact EUV & X-ray Light Sources. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/euvxray.2022.jw5a.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kim, J. K., E. Dodd und D. Umstadter. „All-Optical Femtosecond Electron Acceleration“. In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the27.

Der volle Inhalt der Quelle
Annotation:
The recent development of compact high-peak-power lasers has spurred renewed interest in electron acceleration by the use of the ultrahigh-electric-field gradients of laser-driven plasma waves [1]. In fact, the field gradient of a plasma wave has recently been demonstrated to exceed that of an RF linac by four orders-of-magnitude (E ≥ 200 GV/m) and has been used to accelerate electrons with over 1-nC of charge per bunch in a low-emittance beam (1 mm-mrad) [2]. However, the energy spread of such beams is 100%, due to the method of injection, which is self-trapping of background electrons with random phases with respect to the accelerating buckets. In order to reduce this energy spread, it is generally thought that the required pre-acceleration can only be accomplished with a conventional RF linac. The difficulty is that the wakefield accelerating buckets are 30 fs in duration and the injection bunch must be a small fraction of that. The shortest pulses from laser-triggered photocathode RF guns are much longer, currently 0.5 ps in duration, and have jitters of more than a picosecond. Besides, RF linacs are large and expensive.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Parkhomchuk, V. V. „Some Space-Charge Effects in Electron Cooling Devices“. In HIGH INTENSITY AND HIGH BRIGHTNESS HADRON BEAMS: 20th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams ICFA-HB2002. AIP, 2002. http://dx.doi.org/10.1063/1.1522660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kishek, Rami A., Irving Haber, Marco Venturini und Martin Reiser. „PIC code simulations of the space-charge-dominated beam in the University of Maryland Electron Ring“. In Workshop on space charge physics in high intensity hadron rings. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56750.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "High-charge electron beams"

1

Fetterman, Aaron. Photoinjector Generation of High-Charge Magnetized Beams for Electron-Cooling Applications. Office of Scientific and Technical Information (OSTI), Januar 2021. http://dx.doi.org/10.2172/1763394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shaftan, T. Experimental Characterization of a Space Charge Induced Modulation in High-Brightness Electron Beam. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/839590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie