Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Hierarchical spatial modeling.

Bücher zum Thema „Hierarchical spatial modeling“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-23 Bücher für die Forschung zum Thema "Hierarchical spatial modeling" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

P, Carlin Bradley, und Gelfand Alan E. 1945-, Hrsg. Hierarchical modeling and analysis for spatial data. Boca Raton: Chapman & Hall, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lawson, Andrew. Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. Boca Raton: Taylor & Francis, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dorazio, Robert M. (Robert Matthew) und ScienceDirect (Online service), Hrsg. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities. Amsterdam: Academic, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carlin, Bradley P., Sudipto Banerjee und Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Carlin, Bradley P., Sudipto Banerjee und Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Carlin, Bradley P., Sudipto Banerjee, Alan E. Gelfand und Banerjee Sudipto Staff. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Banerjee, Sudipto. Hierarchical Modeling and Analysis for Spatial Data. Taylor & Francis Group, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Banerjee, Sudipto, Bradley P. Carlin und Alan E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2014. http://dx.doi.org/10.1201/b17115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Banerjee, Sudipto, Bradley P. Carlin, Alan E. Gelfand und Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC, 2003. http://dx.doi.org/10.1201/9780203487808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Keiding, Niels, Andrew B. Lawson, Terry Speed, Byron J. Morgan und Peter Van Der Heijden. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Taylor & Francis Group, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bayesian Disease Mapping Hierarchical Modeling In Spatial Epidemiology. Taylor & Francis Inc, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition. Taylor & Francis Group, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Taylor & Francis Group, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Chapman and Hall/CRC, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Gelfand, Alan E., Bradley P. Carlin und Sudipto Banerjee. Hierarchical Modeling and Analysis for Spatial Data (Monographs on Statistics and Applied Probability). Chapman & Hall/CRC, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Royle, J. Andrew, und Robert M. Dorazio. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Elsevier Science & Technology Books, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Royle, J. Andrew, und Marc Kery. Applied Hierarchical Modeling in Ecology : Analysis of Distribution, Abundance and Species Richness in R and BUGS Vol. 1 : Volume 1: Prelude and Static Models. Elsevier Science & Technology Books, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wikle, Christopher K. Spatial Statistics. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.710.

Der volle Inhalt der Quelle
Annotation:
The climate system consists of interactions between physical, biological, chemical, and human processes across a wide range of spatial and temporal scales. Characterizing the behavior of components of this system is crucial for scientists and decision makers. There is substantial uncertainty associated with observations of this system as well as our understanding of various system components and their interaction. Thus, inference and prediction in climate science should accommodate uncertainty in order to facilitate the decision-making process. Statistical science is designed to provide the tools to perform inference and prediction in the presence of uncertainty. In particular, the field of spatial statistics considers inference and prediction for uncertain processes that exhibit dependence in space and/or time. Traditionally, this is done descriptively through the characterization of the first two moments of the process, one expressing the mean structure and one accounting for dependence through covariability.Historically, there are three primary areas of methodological development in spatial statistics: geostatistics, which considers processes that vary continuously over space; areal or lattice processes, which considers processes that are defined on a countable discrete domain (e.g., political units); and, spatial point patterns (or point processes), which consider the locations of events in space to be a random process. All of these methods have been used in the climate sciences, but the most prominent has been the geostatistical methodology. This methodology was simultaneously discovered in geology and in meteorology and provides a way to do optimal prediction (interpolation) in space and can facilitate parameter inference for spatial data. These methods rely strongly on Gaussian process theory, which is increasingly of interest in machine learning. These methods are common in the spatial statistics literature, but much development is still being done in the area to accommodate more complex processes and “big data” applications. Newer approaches are based on restricting models to neighbor-based representations or reformulating the random spatial process in terms of a basis expansion. There are many computational and flexibility advantages to these approaches, depending on the specific implementation. Complexity is also increasingly being accommodated through the use of the hierarchical modeling paradigm, which provides a probabilistically consistent way to decompose the data, process, and parameters corresponding to the spatial or spatio-temporal process.Perhaps the biggest challenge in modern applications of spatial and spatio-temporal statistics is to develop methods that are flexible yet can account for the complex dependencies between and across processes, account for uncertainty in all aspects of the problem, and still be computationally tractable. These are daunting challenges, yet it is a very active area of research, and new solutions are constantly being developed. New methods are also being rapidly developed in the machine learning community, and these methods are increasingly more applicable to dependent processes. The interaction and cross-fertilization between the machine learning and spatial statistics community is growing, which will likely lead to a new generation of spatial statistical methods that are applicable to climate science.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie