Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Hierarchical Multi-label Text Classification.

Dissertationen zum Thema „Hierarchical Multi-label Text Classification“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-24 Dissertationen für die Forschung zum Thema "Hierarchical Multi-label Text Classification" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Dendamrongvit, Sareewan. „Induction in Hierarchical Multi-label Domains with Focus on Text Categorization“. Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/542.

Der volle Inhalt der Quelle
Annotation:
Induction of classifiers from sets of preclassified training examples is one of the most popular machine learning tasks. This dissertation focuses on the techniques needed in the field of automated text categorization. Here, each document can be labeled with more than one class, sometimes with many classes. Moreover, the classes are hierarchically organized, the mutual relations being typically expressed in terms of a generalization tree. Both aspects (multi-label classification and hierarchically organized classes) have so far received inadequate attention. Existing literature work largely assumes that it is enough to induce a separate binary classifier for each class, and the question of class hierarchy is rarely addressed. This, however, ignores some serious problems. For one thing, induction of thousands of classifiers from hundreds of thousands of examples described by tens of thousands of features (a common case in automated text categorization) incurs prohibitive computational costs---even a single binary classifier in domains of this kind often takes hours, even days, to induce. For another, the circumstance that the classes are hierarchically organized affects the way we view the classification performance of the induced classifiers. The presented work proposes a technique referred to by the acronym "H-kNN-plus." The technique combines support vector machines and nearest neighbor classifiers with the intention to capitalize on the strengths of both. As for performance evaluation, a variety of measures have been used to evaluate hierarchical classifiers, including the standard non-hierarchical criteria that assign the same weight to different types of error. The author proposes a performance measure that overcomes some of their weaknesses. The dissertation begins with a study of (non-hierarchical) multi-label classification. One of the reasons for the poor performance of earlier techniques is the class-imbalance problem---a small number of positive examples being outnumbered by a great many negative examples. Another difficulty is that each of the classes tends to be characterized by a different set of characteristic features. This means that most of the binary classifiers are induced from examples described by predominantly irrelevant features. Addressing these weaknesses by majority-class undersampling and feature selection, the proposed technique significantly improves the overall classification performance. Even more challenging is the issue of hierarchical classification. Here, the dissertation introduces a new induction mechanism, H-kNN-plus, and subjects it to extensive experiments with two real-world datasets. The results indicate its superiority, in these domains, over earlier work in terms of prediction performance as well as computational costs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Borggren, Lukas. „Automatic Categorization of News Articles With Contextualized Language Models“. Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177004.

Der volle Inhalt der Quelle
Annotation:
This thesis investigates how pre-trained contextualized language models can be adapted for multi-label text classification of Swedish news articles. Various classifiers are built on pre-trained BERT and ELECTRA models, exploring global and local classifier approaches. Furthermore, the effects of domain specialization, using additional metadata features and model compression are investigated. Several hundred thousand news articles are gathered to create unlabeled and labeled datasets for pre-training and fine-tuning, respectively. The findings show that a local classifier approach is superior to a global classifier approach and that BERT outperforms ELECTRA significantly. Notably, a baseline classifier built on SVMs yields competitive performance. The effect of further in-domain pre-training varies; ELECTRA’s performance improves while BERT’s is largely unaffected. It is found that utilizing metadata features in combination with text representations improves performance. Both BERT and ELECTRA exhibit robustness to quantization and pruning, allowing model sizes to be cut in half without any performance loss.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Razavi, Amir Hossein. „Automatic Text Ontological Representation and Classification via Fundamental to Specific Conceptual Elements (TOR-FUSE)“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23061.

Der volle Inhalt der Quelle
Annotation:
In this dissertation, we introduce a novel text representation method mainly used for text classification purpose. The presented representation method is initially based on a variety of closeness relationships between pairs of words in text passages within the entire corpus. This representation is then used as the basis for our multi-level lightweight ontological representation method (TOR-FUSE), in which documents are represented based on their contexts and the goal of the learning task. The method is unlike the traditional representation methods, in which all the documents are represented solely based on the constituent words of the documents, and are totally isolated from the goal that they are represented for. We believe choosing the correct granularity of representation features is an important aspect of text classification. Interpreting data in a more general dimensional space, with fewer dimensions, can convey more discriminative knowledge and decrease the level of learning perplexity. The multi-level model allows data interpretation in a more conceptual space, rather than only containing scattered words occurring in texts. It aims to perform the extraction of the knowledge tailored for the classification task by automatic creation of a lightweight ontological hierarchy of representations. In the last step, we will train a tailored ensemble learner over a stack of representations at different conceptual granularities. The final result is a mapping and a weighting of the targeted concept of the original learning task, over a stack of representations and granular conceptual elements of its different levels (hierarchical mapping instead of linear mapping over a vector). Finally the entire algorithm is applied to a variety of general text classification tasks, and the performance is evaluated in comparison with well-known algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wei, Zhihua. „The research on chinese text multi-label classification“. Thesis, Lyon 2, 2010. http://www.theses.fr/2010LYO20025/document.

Der volle Inhalt der Quelle
Annotation:
Text Classification (TC) which is an important field in information technology has many valuable applications. When facing the sea of information resources, the objects of TC are more complicated and diversity. The researches in pursuit of effective and practical TC technology are fairly challenging. More and more researchers regard that multi-label TC is more suited for many applications. This thesis analyses the difficulties and problems in multi-label TC and Chinese text representation based on a mass of algorithms for single-label TC and multi-label TC. Aiming at high dimensionality in feature space, sparse distribution in text representation and poor performance of multi-label classifier, this thesis will bring forward corresponding algorithms from different angles.Focusing on the problem of dimensionality “disaster” when Chinese texts are represented by using n-grams, two-step feature selection algorithm is constructed. The method combines filtering rare features within class and selecting discriminative features across classes. Moreover, the proper value of “n”, the strategy of feature weight and the correlation among features are discussed based on variety of experiments. Some useful conclusions are contributed to the research of n-gram representation in Chinese texts.In a view of the disadvantage in Latent Dirichlet Allocation (LDA) model, that is, arbitrarily revising the variable in smooth process, a new strategy for smoothing based on Tolerance Rough Set (TRS) is put forward. It constructs tolerant class in global vocabulary database firstly and then assigns value for out-of-vocabulary (oov) word in each class according to tolerant class.In order to improve performance of multi-label classifier and degrade computing complexity, a new TC method based on LDA model is applied for Chinese text representation. It extracts topics statistically from texts and then texts are represented by using the topic vector. It shows competitive performance both in English and in Chinese corpus.To enhance the performance of classifiers in multi-label TC, a compound classification framework is raised. It partitions the text space by computing the upper approximation and lower approximation. This algorithm decomposes a multi-label TC problem into several single-label TCs and several multi-label TCs which have less labels than original problem. That is, an unknown text should be classified by single-label classifier when it is partitioned into lower approximation space of some class. Otherwise, it should be classified by corresponding multi-label classifier.An application system TJ-MLWC (Tongji Multi-label Web Classifier) was designed. It could call the result from Search Engines directly and classify these results real-time using improved Naïve Bayes classifier. This makes the browse process more conveniently for users. Users could locate the texts interested immediately according to the class information given by TJ-MLWC
La thèse est centrée sur la Classification de texte, domaine en pleine expansion, avec de nombreuses applications actuelles et potentielles. Les apports principaux de la thèse portent sur deux points : Les spécificités du codage et du traitement automatique de la langue chinoise : mots pouvant être composés de un, deux ou trois caractères ; absence de séparation typographique entre les mots ; grand nombre d’ordres possibles entre les mots d’une phrase ; tout ceci aboutissant à des problèmes difficiles d’ambiguïté. La solution du codage en «n-grams »(suite de n=1, ou 2 ou 3 caractères) est particulièrement adaptée à la langue chinoise, car elle est rapide et ne nécessite pas les étapes préalables de reconnaissance des mots à l’aide d’un dictionnaire, ni leur séparation. La classification multi-labels, c'est-à-dire quand chaque individus peut être affecté à une ou plusieurs classes. Dans le cas des textes, on cherche des classes qui correspondent à des thèmes (topics) ; un même texte pouvant être rattaché à un ou plusieurs thème. Cette approche multilabel est plus générale : un même patient peut être atteint de plusieurs pathologies ; une même entreprise peut être active dans plusieurs secteurs industriels ou de services. La thèse analyse ces problèmes et tente de leur apporter des solutions, d’abord pour les classifieurs unilabels, puis multi-labels. Parmi les difficultés, la définition des variables caractérisant les textes, leur grand nombre, le traitement des tableaux creux (beaucoup de zéros dans la matrice croisant les textes et les descripteurs), et les performances relativement mauvaises des classifieurs multi-classes habituels
文本分类是信息科学中一个重要而且富有实际应用价值的研究领域。随着文本分类处理内容日趋复杂化和多元化,分类目标也逐渐多样化,研究有效的、切合实际应用需求的文本分类技术成为一个很有挑战性的任务,对多标签分类的研究应运而生。本文在对大量的单标签和多标签文本分类算法进行分析和研究的基础上,针对文本表示中特征高维问题、数据稀疏问题和多标签分类中分类复杂度高而精度低的问题,从不同的角度尝试运用粗糙集理论加以解决,提出了相应的算法,主要包括:针对n-gram作为中文文本特征时带来的维数灾难问题,提出了两步特征选择的方法,即去除类内稀有特征和类间特征选择相结合的方法,并就n-gram作为特征时的n值选取、特征权重的选择和特征相关性等问题在大规模中文语料库上进行了大量的实验,得出一些有用的结论。针对文本分类中运用高维特征表示文本带来的分类效率低,开销大等问题,提出了基于LDA模型的多标签文本分类算法,利用LDA模型提取的主题作为文本特征,构建高效的分类器。在PT3多标签分类转换方法下,该分类算法在中英文数据集上都表现出很好的效果,与目前公认最好的多标签分类方法效果相当。针对LDA模型现有平滑策略的随意性和武断性的缺点,提出了基于容差粗糙集的LDA语言模型平滑策略。该平滑策略首先在全局词表上构造词的容差类,再根据容差类中词的频率为每类文档的未登录词赋予平滑值。在中英文、平衡和不平衡语料库上的大量实验都表明该平滑方法显著提高了LDA模型的分类性能,在不平衡语料库上的提高尤其明显。针对多标签分类中分类复杂度高而精度低的问题,提出了一种基于可变精度粗糙集的复合多标签文本分类框架,该框架通过可变精度粗糙集方法划分文本特征空间,进而将多标签分类问题分解为若干个两类单标签分类问题和若干个标签数减少了的多标签分类问题。即,当一篇未知文本被划分到某一类文本的下近似区域时,可以直接用简单的单标签文本分类器判断其类别;当未知文本被划分在边界域时,则采用相应区域的多标签分类器进行分类。实验表明,这种分类框架下,分类的精确度和算法效率都有较大的提高。本文还设计和实现了一个基于多标签分类的网页搜索结果可视化系统(MLWC),该系统能够直接调用搜索引擎返回的搜索结果,并采用改进的Naïve Bayes多标签分类算法实现实时的搜索结果分类,使用户可以快速地定位搜索结果中感兴趣的文本。
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Burkhardt, Sophie [Verfasser]. „Online Multi-label Text Classification using Topic Models / Sophie Burkhardt“. Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1173911235/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sendur, Zeynel. „Text Document Categorization by Machine Learning“. Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_theses/209.

Der volle Inhalt der Quelle
Annotation:
Because of the explosion of digital and online text information, automatic organization of documents has become a very important research area. There are mainly two machine learning approaches to enhance the organization task of the digital documents. One of them is the supervised approach, where pre-defined category labels are assigned to documents based on the likelihood suggested by a training set of labeled documents; and the other one is the unsupervised approach, where there is no need for human intervention or labeled documents at any point in the whole process. In this thesis, we concentrate on the supervised learning task which deals with document classification. One of the most important tasks of information retrieval is to induce classifiers capable of categorizing text documents. The same document can belong to two or more categories and this situation is referred by the term multi-label classification. Multi-label classification domains have been encountered in diverse fields. Most of the existing machine learning techniques which are in multi-label classification domains are extremely expensive since the documents are characterized by an extremely large number of features. In this thesis, we are trying to reduce these computational costs by applying different types of algorithms to the documents which are characterized by large number of features. Another important thing that we deal in this thesis is to have the highest possible accuracy when we have the high computational performance on text document categorization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Artmann, Daniel. „Applying machine learning algorithms to multi-label text classification on GitHub issues“. Thesis, Högskolan i Halmstad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43097.

Der volle Inhalt der Quelle
Annotation:
This report compares five machine learning algorithms in their ability to categorize code repositories. The focus of expanding software projects tend to shift from developing new software to the maintenance of the projects. Maintainers can label code repositories to organize the project, but this requires manual labor and time. This report will evaluate how machine learning algorithms perform in automatically classifying code repositories. Automatic classification can aid the management process by reducing both manual labor and human errors. GitHub provides online hosting for both private and public code repositories. In these repositories, users can open issues and assign labels to them, to keep track of bugs, enhancement, or requests. GitHub was used as a source for all data as it contains millions of open-source repositories. The focus was on the most popular labels from GitHub - both default labels and those defined by users. This report investigated the algorithms linear regression (LR), convolutional neural network (CNN), recurrent neural network (RNN), random forest (RF), and k-nearest-neighbor (KNN) - in multi-label text classification. The mentioned algorithms were implemented, trained, and tested with the Keras and Scikit-learn libraries. The training sets contained around 38 thousand rows and the test set around 12 thousand rows. Cross-validation was used to measure the performance of each algorithm. The metrics used to obtain the results were precision, recall, and F1-score. The algorithms were empirically tested on a different number of output labels. In order to maximize the F1-score, different designs of the neural networks and different natural language processing (NLP) methods were evaluated. This was done to see if the algorithms could be used to efficiently organize code repositories. CNN displayed the best scores in all experiments, but LR, RNN, and RF also showed some good results. LR, CNN, and RNN the had the highest F1-scores while RF could achieve a particularly high precision. KNN performed much worse than all other algorithms. The highest F1-score of 46.48% was achieved when using a non-sequential CNN model that used text input with stem words. The highest precision of 89.17% was achieved by RF. It was concluded that LR, CNN, RNN, and RF were all viable in classifying labels in software-related texts, among those found in GitHub issues. KNN wasn't found to be a viable candidate for this purpose.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Xin. „Multi-label Learning under Different Labeling Scenarios“. Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/350482.

Der volle Inhalt der Quelle
Annotation:
Computer and Information Science
Ph.D.
Traditional multi-class classification problems assume that each instance is associated with a single label from category set Y where |Y| > 2. Multi-label classification generalizes multi-class classification by allowing each instance to be associated with multiple labels from Y. In many real world data analysis problems, data objects can be assigned into multiple categories and hence produce multi-label classification problems. For example, an image for object categorization can be labeled as 'desk' and 'chair' simultaneously if it contains both objects. A news article talking about the effect of Olympic games on tourism industry might belong to multiple categories such as 'sports', 'economy', and 'travel', since it may cover multiple topics. Regardless of the approach used, multi-label learning in general requires a sufficient amount of labeled data to recover high quality classification models. However due to the label sparsity, i.e. each instance only carries a small number of labels among the label set Y, it is difficult to prepare sufficient well-labeled data for each class. Many approaches have been developed in the literature to overcome such challenge by exploiting label correlation or label dependency. In this dissertation, we propose a probabilistic model to capture the pairwise interaction between labels so as to alleviate the label sparsity. Besides of the traditional setting that assumes training data is fully labeled, we also study multi-label learning under other scenarios. For instance, training data can be unreliable due to missing values. A conditional Restricted Boltzmann Machine (CRBM) is proposed to take care of such challenge. Furthermore, labeled training data can be very scarce due to the cost of labeling but unlabeled data are redundant. We proposed two novel multi-label learning algorithms under active setting to relieve the pain, one for standard single level problem and one for hierarchical problem. Our empirical results on multiple multi-label data sets demonstrate the efficacy of the proposed methods.
Temple University--Theses
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Průša, Petr. „Multi-label klasifikace textových dokumentů“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-412872.

Der volle Inhalt der Quelle
Annotation:
The master's thesis deals with automatic classifi cation of text document. It explains basic terms and problems of text mining. The thesis explains term clustering and shows some basic clustering algoritms. The thesis also shows some methods of classi fication and deals with matrix regression closely. Application using matrix regression for classifi cation was designed and developed. Experiments were focused on normalization and thresholding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rios, Anthony. „Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records“. UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/71.

Der volle Inhalt der Quelle
Annotation:
Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is an essential task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. Therefore, it is necessary to develop automated diagnosis and procedure code recommendation methods that can be used by professional medical coders. The main difficulty with developing automated EMR coding methods is the nature of the label space. The standardized vocabularies used for medical coding contain over 10 thousand codes. The label space is large, and the label distribution is extremely unbalanced - most codes occur very infrequently, with a few codes occurring several orders of magnitude more than others. A few codes never occur in training dataset at all. In this work, we present three methods to handle the large unbalanced label space. First, we study how to augment EMR training data with biomedical data (research articles indexed on PubMed) to improve the performance of standard neural networks for text classification. PubMed indexes more than 23 million citations. Many of the indexed articles contain relevant information about diagnosis and procedure codes. Therefore, we present a novel method of incorporating this unstructured data in PubMed using transfer learning. Second, we combine ideas from metric learning with recent advances in neural networks to form a novel neural architecture that better handles infrequent codes. And third, we present new methods to predict codes that have never appeared in the training dataset. Overall, our contributions constitute advances in neural multi-label text classification with potential consequences for improving EMR coding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tsatsaronis, George. „An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition“. BioMed Central, 2015. https://tud.qucosa.de/id/qucosa%3A29496.

Der volle Inhalt der Quelle
Annotation:
This article provides an overview of the first BioASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BioASQ assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return concise and user-understandable answers to given natural language questions by combining information from biomedical articles and ontologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tsatsaronis, George. „An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202687.

Der volle Inhalt der Quelle
Annotation:
This article provides an overview of the first BioASQ challenge, a competition on large-scale biomedical semantic indexing and question answering (QA), which took place between March and September 2013. BioASQ assesses the ability of systems to semantically index very large numbers of biomedical scientific articles, and to return concise and user-understandable answers to given natural language questions by combining information from biomedical articles and ontologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Rodríguez, Medina Samuel. „Multi-Label Text Classification with Transfer Learning for Policy Documents : The Case of the Sustainable Development Goals“. Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395186.

Der volle Inhalt der Quelle
Annotation:
We created and analyzed a text classification dataset from freely-available web documents from the United Nation's Sustainable Development Goals. We then used it to train and compare different multi-label text classifiers with the aim of exploring the alternatives for methods that facilitate the search of information of this type of documents. We explored the effectiveness of deep learning and transfer learning in text classification by fine-tuning different pre-trained language representations — Word2Vec, GloVe, ELMo, ULMFiT and BERT. We also compared these approaches against a baseline of more traditional algorithms without using transfer learning. More specifically, we used multinomial Naive Bayes, logistic regression, k-nearest neighbors and Support Vector Machines. We then analyzed the results of our experiments quantitatively and qualitatively. The best results in terms of micro-averaged F1 scores and AUROC are obtained by BERT. However, it is also interesting that the second best classifier in terms of micro-averaged F1 scores is the Support Vector Machines, closely followed by the logistic regression classifier, which both have the advantage of being less computationally expensive than BERT. The results also show a close relation between our dataset size and the effectiveness of the classifiers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Metz, Jean. „Abordagens para aprendizado semissupervisionado multirrótulo e hierárquico“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012012-144607/.

Der volle Inhalt der Quelle
Annotation:
A tarefa de classificação em Aprendizado de Máquina consiste da criação de modelos computacionais capazes de identificar automaticamente a classe de objetos pertencentes a um domínio pré-definido a partir de um conjunto de exemplos cuja classe é conhecida. Existem alguns cenários de classificação nos quais cada objeto pode estar associado não somente a uma classe, mas a várias classes ao mesmo tempo. Adicionalmente, nesses cenários denominados multirrótulo, as classes podem ser organizadas em uma taxonomia que representa as relações de generalização e especialização entre as diferentes classes, definindo uma hierarquia de classes, o que torna a tarefa de classificação ainda mais específica, denominada classificação hierárquica. Os métodos utilizados para a construção desses modelos de classificação são complexos e dependem fortemente da disponibilidade de uma quantidade expressiva de exemplos previamente classificados. Entretanto, para muitas aplicações é difícil encontrar um número significativo desses exemplos. Além disso, com poucos exemplos, os algoritmos de aprendizado supervisionado não são capazes de construir modelos de classificação eficazes. Nesses casos, é possível utilizar métodos de aprendizado semissupervisionado, cujo objetivo é aprender as classes do domínio utilizando poucos exemplos conhecidos conjuntamente com um número considerável de exemplos sem a classe especificada. Neste trabalho são propostos, entre outros, métodos que fazem uso do aprendizado semissupervisionado baseado em desacordo coperspectiva, tanto para a tarefa de classificação multirrótulo plana quanto para a tarefa de classificação hierárquica. São propostos, também, outros métodos que utilizam o aprendizado ativo com intuito de melhorar a performance de algoritmos de classificação semissupervisionada. Além disso, são propostos dois métodos para avaliação de algoritmos multirrótulo e hierárquico, os quais definem estratégias para identificação dos multirrótulos majoritários, que são utilizados para calcular os valores baseline das medidas de avaliação. Foi desenvolvido um framework para realizar a avaliação experimental da classificação hierárquica, no qual foram implementados os métodos propostos e um módulo completo para realizar a avaliação experimental de algoritmos hierárquicos. Os métodos propostos foram avaliados e comparados empiricamente, considerando conjuntos de dados de diversos domínios. A partir da análise dos resultados observa-se que os métodos baseados em desacordo não são eficazes para tarefas de classificação complexas como multirrótulo e hierárquica. Também é observado que o problema central de degradação do modelo dos algoritmos semissupervisionados agrava-se nos casos de classificação multirrótulo e hierárquica, pois, nesses casos, há um incremento nos fatores responsáveis pela degradação nos modelos construídos utilizando aprendizado semissupervisionado baseado em desacordo coperspectiva
In machine learning, the task of classification consists on creating computational models that are able to automatically identify the class of objects belonging to a predefined domain from a set of examples whose class is known a priori. There are some classification scenarios in which each object can be associated to more than one class at the same time. Moreover, in such multilabeled scenarios, classes can be organized in a taxonomy that represents the generalization and specialization relationships among the different classes, which defines a class hierarchy, making the classification task, known as hierarchical classification, even more specific. The methods used to build such classification models are complex and highly dependent on the availability of an expressive quantity of previously classified examples. However, for a large number of applications, it is difficult to find a significant number of such examples. Moreover, when few examples are available, supervised learning algorithms are not able to build efficient classification models. In such situations it is possible to use semi-supervised learning, whose aim is to learn the classes of the domain using a few classified examples in conjunction to a considerable number of examples with no specified class. In this work, we propose methods that use the co-perspective disagreement based learning approach for both, the flat multilabel classification and the hierarchical classification tasks, among others. We also propose other methods that use active learning, aiming at improving the performance of semi-supervised learning algorithms. Additionally, two methods for the evaluation of multilabel and hierarchical learning algorithms are proposed. These methods define strategies for the identification of the majority multilabels, which are used to estimate the baseline evaluation measures. A framework for the experimental evaluation of the hierarchical classification was developed. This framework includes the implementations of the proposed methods as well as a complete module for the experimental evaluation of the hierarchical algorithms. The proposed methods were empirically evaluated considering datasets from various domains. From the analysis of the results, it can be observed that the methods based on co-perspective disagreement are not effective for complex classification tasks, such as the multilabel and hierarchical classification. It can also be observed that the main degradation problem of the models of the semi-supervised algorithms worsens for the multilabel and hierarchical classification due to the fact that, for these cases, there is an increase in the causes of the degradation of the models built using semi-supervised learning based on co-perspective disagreement
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Santos, Araken de Medeiros. „Investigando a combina??o de t?cnicas de aprendizado semissupervisionado e classifica??o hier?rquica multirr?tulo“. Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18690.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2015-03-03T15:48:39Z (GMT). No. of bitstreams: 1 ArakenMS_TESE.pdf: 4060697 bytes, checksum: 5efe25ac134a602cc32c96b66e749ea0 (MD5) Previous issue date: 2012-05-25
Data classification is a task with high applicability in a lot of areas. Most methods for treating classification problems found in the literature dealing with single-label or traditional problems. In recent years has been identified a series of classification tasks in which the samples can be labeled at more than one class simultaneously (multi-label classification). Additionally, these classes can be hierarchically organized (hierarchical classification and hierarchical multi-label classification). On the other hand, we have also studied a new category of learning, called semi-supervised learning, combining labeled data (supervised learning) and non-labeled data (unsupervised learning) during the training phase, thus reducing the need for a large amount of labeled data when only a small set of labeled samples is available. Thus, since both the techniques of multi-label and hierarchical multi-label classification as semi-supervised learning has shown favorable results with its use, this work is proposed and used to apply semi-supervised learning in hierarchical multi-label classication tasks, so eciently take advantage of the main advantages of the two areas. An experimental analysis of the proposed methods found that the use of semi-supervised learning in hierarchical multi-label methods presented satisfactory results, since the two approaches were statistically similar results
A classifica??o de dados ? uma tarefa com alta aplicabilidade em uma grande quantidade de dom?nios. A maioria dos m?todos para tratar problemas de classifica??o encontrados na literatura, tratam problemas tradicionais ou unirr?tulo. Nos ?ltimos anos vem sendo identificada uma s?rie de tarefas de classifica??o nas quais os exemplos podem ser rotulados a mais de uma classe simultaneamente (classifica??o multirr?tulo). Adicionalmente, tais classes podem estar hierarquicamente organizadas (classifica??o hier?rquica e classifica??o hier?rquica multirr?tulo). Por outro lado, tem-se estudado tamb?m uma nova categoria de aprendizado, chamada de aprendizado semissupervisionado, que combina dados rotulados (aprendizado supervisionado) e dados n?o-rotulados (aprendizado n?o-supervisionado), durante a fase de treinamento, reduzindo, assim, a necessidade de uma grande quantidade de dados rotulados quando somente um pequeno conjunto de exemplos rotulados est? dispon?- vel. Desse modo, uma vez que tanto as t?cnicas de classifica??o multirr?tulo e hier?rquica multirr?tulo quanto o aprendizado semissupervisionado vem apresentando resultados favor ?veis ? sua utiliza??o, neste trabalho ? proposta e utilizada a aplica??o de aprendizado semissupervisionado em tarefas de classifica??o hier?rquica multirr?tulo, de modo a se atender eficientemente as principais necessidades das duas ?reas. Uma an?lise experimental dos m?todos propostos verificou que a utiliza??o do aprendizado semissupervisionado em m?todos de classifica??o hier?rquica multirr?tulo apresentou resultados satisfat?rios, uma vez que as duas abordagens apresentaram resultados estatisticamente semelhantes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Cerri, Ricardo. „Redes neurais e algoritmos genéticos para problemas de classificação hierárquica multirrótulo“. Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24032014-163900/.

Der volle Inhalt der Quelle
Annotation:
Em problemas convencionais de classificação, cada exemplo de um conjunto de dados é associado a apenas uma dentre duas ou mais classes. No entanto, existem problemas de classificação mais complexos, nos quais as classes envolvidas no problema são estruturadas hierarquicamente, possuindo subclasses e superclasses. Nesses problemas, exemplos podem ser atribuídos simultaneamente a classes pertencentes a dois ou mais caminhos de uma hierarquia, ou seja, exemplos podem ser classificados em várias classes localizadas em um mesmo nível hierárquico. Tal hierarquia pode ser estruturada como uma árvore ou como um grafo acíclico direcionado. Esses problemas são chamados de problemas de classificação hierárquica multirrótulo, sendo mais difíceis devido à alta complexidade, diversidade de soluções, difícil modelagem e desbalanceamento dos dados. Duas abordagens são utilizadas para tratar esses problemas, chamadas global e local. Na abordagem global, um único classificador é induzido para lidar com todas as classes do problema simultaneamente, e a classificação de novos exemplos é realizada em apenas um passo. Já na abordagem local, um conjunto de classificadores é induzido, sendo cada classificador responsável pela predição de uma classe ou de um conjunto de classes, e a classificação de novos exemplos é realizada em vários passos, considerando as predições dos vários classificadores. Nesta Tese de Doutorado, são propostos e investigados dois métodos para classificação hierárquica multirrótulo. O primeiro deles é baseado na abordagem local, e associa uma rede neural Multi-Layer Perceptron (MLP) a cada nível da hierarquia, sendo cada MLP responsável pelas predições no seu nível associado. O método é chamado Hierarchical Multi- Label Classification with Local Multi-Layer Perceptrons (HMC-LMLP). O segundo método é baseado na abordagem global, e induz regras de classificação hierárquicas multirrótulo utilizando um Algoritmo Genético. O método é chamado Hierarchical Multi-Label Classification with a Genetic Algorithm (HMC-GA). Experimentos utilizando hierarquias estruturadas como árvores mostraram que o método HMC-LMLP obteve desempenhos de classificação superiores ao método estado-da-arte na literatura, e desempenhos superiores ou competitivos quando utilizando hierarquias estruturadas como grafos. O método HMC-GA obteve resultados competitivos com outros métodos da literatura em hierarquias estruturadas como árvores e grafos, sendo capaz de induzir, em muitos casos, regras menores e em menor quantidade
conventional classification problems, each example of a dataset is associated with just one among two or more classes. However, there are more complex classification problems where the classes are hierarchically structured, having subclasses and superclasses. In these problems, examples can be simultaneously assigned to classes belonging to two or more paths of a hierarchy, i.e., examples can be classified in many classes located in the same hierarchical level. Such a hierarchy can be structured as a tree or a directed acyclic graph. These problems are known as hierarchical multi-label classification problems, being more difficult due to the high complexity, diversity of solutions, modeling difficulty and data imbalance. Two main approaches are used to deal with these problems, called global and local. In the global approach, only one classifier is induced to deal with all classes simultaneously, and the classification of new examples is done in just one step. In the local approach, a set of classifiers is induced, where each classifier is responsible for the predictions of one class or a set of classes, and the classification of new examples is done in many steps, considering the predictions of all classifiers. In this Thesis, two methods for hierarchical multi-label classification are proposed and investigated. The first one is based on the local approach, and associates a Multi-Layer Perceptron (MLP) to each hierarchical level, being each MLP responsible for the predictions in its associated level. The method is called Hierarchical Multi-Label Classification with Local Multi-Layer Perceptrons (HMC-LMLP). The second method is based on the global approach, and induces hierarchical multi-label classification rules using a Genetic Algorithm. The method is called Hierarchical Multi-Label Classification with a Genetic Algorithm (HMC-GA). Experiments using hierarchies structured as trees showed that HMC-LMLP obtained classification performances superior to the state-of-the-art method in the literature, and superior or competitive performances when using graph-structured hierarchies. The HMC-GA method obtained competitive results with other methods of the literature in both tree and graph-structured hierarchies, being able of inducing, in many cases, smaller and in less quantity rules
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Araújo, Hiury Nogueira de. „Utilizando aprendizado emissupervisionado multidescrição em problemas de classificação hierárquica multirrótulo“. Universidade Federal Rural do Semi-Árido, 2017. http://bdtd.ufersa.edu.br:80/tede/handle/tede/839.

Der volle Inhalt der Quelle
Annotation:
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2018-03-14T20:25:58Z No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5)
Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-06-18T16:58:58Z (GMT) No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5)
Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-06-18T16:59:18Z (GMT) No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5)
Made available in DSpace on 2018-06-18T16:59:31Z (GMT). No. of bitstreams: 1 HiuryNA_DISSERT.pdf: 3188162 bytes, checksum: d40d42a78787557868ebc6d3cd5af945 (MD5) Previous issue date: 2017-11-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Data classification is a task applied in various areas of knowledge, therefore, the focus of ongoing research. Data classification can be divided according to the available data, which are labeled or not labeled. One approach has proven very effective when working with data sets containing labeled and unlabeled data, this called semi-supervised learning, your objective is to label the unlabeled data by using the amount of labeled data in the data set, improving their success rate. Such data can be classified with more than one label, known as multi-label classification. Furthermore, these data can be organized hierarchically, thus containing a relation therebetween, this called hierarchical classification. This work proposes the use of multi-view semi-supervised learning, which is one of the semissupervisionado learning aspects, in problems of hierarchical multi-label classification, with the objective of investigating whether semi-supervised learning is an appropriate approach to solve the problem of low dimensionality of data. An experimental analysis of the methods found that supervised learning had a better performance than semi-supervised approaches, however, semi-supervised learning may be a widely used approach, because, there is plenty to be contributed in this area
classificação de dados é uma tarefa aplicada em diversas áreas do conhecimento, sendo assim, foco de constantes pesquisas. A classificação de dados pode ser dividida de acordo com a disposição dos dados, sendo estes rotulados ou não rotulados. Uma abordagem vem se mostrando bastante eficiente ao se trabalhar com conjuntos de dados contendo dados rotulados e não rotulados, esta chamada de aprendizado semissupervisionado, seu objetivo é classificar os dados não rotulados através da quantidade de dados rotulados contidos no conjunto, melhorando sua taxa de acerto. Tais dados podem ser classificados com mais de um rótulo, conhecida como classificação multirrótulo. Além disso, estes dados podem estar organizados de forma hierárquica, contendo assim, uma relação entre os mesmos, esta, por sua vez, denominada classificação hierárquica. Neste trabalho é proposto a utilização do aprendizado semissupervisionado multidescrição, que é uma das vertentes do aprendizado semissupervisionado, em problemas de classificação hierárquica multirrótulo, com o objetivo de investigar se o aprendizado semissupervisionado é uma abordagem apropriada para resolver o problema de baixa dimensionalidade de dados. Uma análise experimental dos métodos verificou que o aprendizado supervisionado obteve melhor desempenho contra as abordagens semissupervisionadas, contudo, o aprendizado semissupervisionado pode vir a ser uma abordagem amplamente utilizada, pois, há bastante o que ser contribuído nesta área
2018-03-14
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

jia-liang, Chen, und 陳佳良. „Hierarchical Multi-class Text Classification Using Support Vector Machines“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/09344492149763276087.

Der volle Inhalt der Quelle
Annotation:
碩士
元智大學
資訊管理學系
96
This study presents a hierarchical multi-class text classification framework based on the characteristics of enterprise documents. The multi-class classifiers are based on Support Vector Machines using an one-against-one approach. The features used by each classifier are selected using DF (Document Frequency) and CC (Correlated Coefficient). We conducted experiments on two different datasets; one contains enterprise documents from IC a local equipment manufacture and the other contains mainland china news. The experimental results show that our proposed method performed well on both datasets and ran faster than a non-hierarchical approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Tsai, Shang-Chi, und 蔡尚錡. „Leveraging Hierarchical Category Knowledge for Multi-Label Diagnostic Text Understanding“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/24rczv.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺灣大學
資料科學學位學程
107
Clinical notes are essential medical documents to record each patient''s symptoms. Each record is typically annotated with medical diagnostic codes, which means diagnosis and treatment. This paper focuses on predicting diagnostic codes given the descriptive present illness in electronic health records by leveraging domain knowledge. We investigate various losses in a convolutional model to utilize hierarchical category knowledge of diagnostic codes in order to allow the model to share semantics across different labels under the same category. The proposed model not only considers the external domain knowledge but also addresses the issue about data imbalance. The MIMIC3 benchmark experiments show that the proposed methods can effectively utilize category knowledge and provide informative cues to improve the performance in terms of the top-ranked diagnostic codes which is better than the prior state-of-the-art. The investigation and discussion express the potential of integrating the domain knowledge in the current machine learning based models and guiding future research directions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Rau, YI-EN, und 饒以恩. „An empirical study of multi-label text classification: word2vector vs traditional techniques“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/54syt9.

Der volle Inhalt der Quelle
Annotation:
碩士
國立中央大學
資訊管理學系在職專班
107
The development of the Internet has led to the rapid advancement of social media. Because the free speech and anonymity of social media characteristic, it causes abuse such as cyber harassment and Toxic Comments. Machine learning have changed many fields, for example computer vision, speech recognition and language processing. I will use the text classification of machine learning to effectively filter out Toxic Comments. The dataset is from the competition organized by Kaggle: Toxic Comment Classification Challenge, whose source is Wikipedia's comments. These comments have been flagged as malicious and toxic by human evaluators. I will use Machine Learning (ML) method to match different Document representations for data analysis and prediction. In this study, the Document representations of the text will use TF-IDF and Word2Vec for comparison and use KNN, SVM, ANN, Deep Learning as text classifier. This data set contains six multi-labels: toxic, severe_toxic, obscene, threat, insult, identity_hate, so the six labels are paired with different Document representations and text classifiers for comparative analysis. The results show that in the Precision section, there is best predictive performance in TF-IDF combined with the SVM classifier than Word2Vec. About the Recall section, there is best predictive performance in Word2vec combined with LSTM classifiers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ma, Long. „A Multi-label Text Classification Framework: Using Supervised and Unsupervised Feature Selection Strategy“. 2017. http://scholarworks.gsu.edu/cs_diss/123.

Der volle Inhalt der Quelle
Annotation:
Text classification, the task of metadata to documents, requires significant time and effort when performed by humans. Moreover, with online-generated content explosively growing, it becomes a challenge for manually annotating with large scale and unstructured data. Currently, lots of state-or-art text mining methods have been applied to classification process, many of them based on the key word extraction. However, when using these key words as features in classification task, it is common that feature dimension is huge. In addition, how to select key words from tons of documents as features in classification task is also a challenge. Especially when using tradition machine learning algorithm in the large data set, the computation cost would be high. In addition, almost 80% of real data is unstructured and non-labeled. The advanced supervised feature selection methods cannot be used directly in selecting entities from massive of data. Usually, extracting features from unlabeled data for classification tasks, statistical strategies have been utilized to discover key features. However, we propose a nova method to extract important features effectively before feeding them into the classification assignment. There is another challenge in the text classification is the multi-label problem, the assignment of multiple non-exclusive labels to the documents. This problem makes text classification more complicated when compared with single label classification. Considering above issues, we develop a framework for extracting and eliminating data dimensionality, solving the multi-label problem on labeled and unlabeled data set. To reduce data dimension, we provide 1) a hybrid feature selection method that extracts meaningful features according to the importance of each feature. 2) we apply the Word2Vec to represent each document with a lower feature dimension when doing the document categorization for the big data set. 3) An unsupervised approach to extract features from real online generated data for text classification and prediction. On the other hand, to solve the multi-label classification task, we design a new Multi-Instance Multi-Label (MIML) algorithm in the proposed framework.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Chen, Sung-En, und 陳頌恩. „A hierarchical Multi-label Classification System of K-12 Cross-Knowledge Points Math Question“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/tqz79a.

Der volle Inhalt der Quelle
Annotation:
碩士
國立中央大學
資訊工程學系
107
With the development and progress of science and technology, the learning patterns also evolve. In Question-Driven learning, students clarify and validate what they learn by answering questions. Such a large number of questions needs good management. A well-performed management can avoid the situation that learning materials with the same knowledge set are defined into different sections due to ambiguous expressions. In this work, a hierarchical classification system that focuses on K-12 learning materials is proposed. We test several combination of document representation with flatten label and hierarchical label of the knowledge points. In response to a current question that contains text and image, we also introduce a multi-modal preprocessing approach and a combined feature CNN model. The experiment shows that our hierarchical classification can outperform flatten multi-label classification methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

George, Susanna Serene. „Emergency Medical Service EMR-Driven Concept Extraction From Narrative Text“. Thesis, 2021. http://dx.doi.org/10.7912/C2/68.

Der volle Inhalt der Quelle
Annotation:
Indiana University-Purdue University Indianapolis (IUPUI)
Being in the midst of a pandemic with patients having minor symptoms that quickly become fatal to patients with situations like a stemi heart attack, a fatal accident injury, and so on, the importance of medical research to improve speed and efficiency in patient care, has increased. As researchers in the computer domain work hard to use automation in technology in assisting the first responders in the work they do, decreasing the cognitive load on the field crew, time taken for documentation of each patient case and improving accuracy in details of a report has been a priority. This paper presents an information extraction algorithm that custom engineers certain existing extraction techniques that work on the principles of natural language processing like metamap along with syntactic dependency parser like spacy for analyzing the sentence structure and regular expressions to recurring patterns, to retrieve patient-specific information from medical narratives. These concept value pairs automatically populates the fields of an EMR form which could be reviewed and modified manually if needed. This report can then be reused for various medical and billing purposes related to the patient.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

(10947207), Susanna S. George. „EMERGENCY MEDICAL SERVICE EMR-DRIVEN CONCEPT EXTRACTION FROM NARRATIVE TEXT“. Thesis, 2021.

Den vollen Inhalt der Quelle finden
Annotation:
Being in the midst of a pandemic with patients having minor symptoms that quickly become fatal to patients with situations like a stemi heart attack, a fatal accident injury, and so on, the importance of medical research to improve speed and efficiency in patient care, has increased. As researchers in the computer domain work hard to use automation in technology in assisting the first responders in the work they do, decreasing the cognitive load on the field crew, time taken for documentation of each patient case and improving accuracy in details of a report has been a priority.
This paper presents an information extraction algorithm that custom engineers certain existing extraction techniques that work on the principles of natural language processing like metamap along with syntactic dependency parser like spacy for analyzing the sentence structure and regular expressions to recurring patterns, to retrieve patient-specific information from medical narratives. These concept value pairs automatically populates the fields of an EMR form which could be reviewed and modified manually if needed. This report can then be reused for various medical and billing purposes related to the patient.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie