Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hierarchical Multi-label Text Classification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hierarchical Multi-label Text Classification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hierarchical Multi-label Text Classification"
Ma, Yinglong, Xiaofeng Liu, Lijiao Zhao, Yue Liang, Peng Zhang und Beihong Jin. „Hybrid embedding-based text representation for hierarchical multi-label text classification“. Expert Systems with Applications 187 (Januar 2022): 115905. http://dx.doi.org/10.1016/j.eswa.2021.115905.
Der volle Inhalt der QuelleYang, Zhenyu, und Guojing Liu. „Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification“. IEEE Access 7 (2019): 153012–20. http://dx.doi.org/10.1109/access.2019.2948855.
Der volle Inhalt der QuelleGargiulo, Francesco, Stefano Silvestri, Mario Ciampi und Giuseppe De Pietro. „Deep neural network for hierarchical extreme multi-label text classification“. Applied Soft Computing 79 (Juni 2019): 125–38. http://dx.doi.org/10.1016/j.asoc.2019.03.041.
Der volle Inhalt der QuelleWang, Boyan, Xuegang Hu, Peipei Li und Philip S. Yu. „Cognitive structure learning model for hierarchical multi-label text classification“. Knowledge-Based Systems 218 (April 2021): 106876. http://dx.doi.org/10.1016/j.knosys.2021.106876.
Der volle Inhalt der QuelleManoharan J, Samuel. „Capsule Network Algorithm for Performance Optimization of Text Classification“. March 2021 3, Nr. 1 (03.04.2021): 1–9. http://dx.doi.org/10.36548/jscp.2021.1.001.
Der volle Inhalt der QuelleVogrincic, Sergeja, und Zoran Bosnic. „Ontology-based multi-label classification of economic articles“. Computer Science and Information Systems 8, Nr. 1 (2011): 101–19. http://dx.doi.org/10.2298/csis100420034v.
Der volle Inhalt der QuelleGong, Jibing, Hongyuan Ma, Zhiyong Teng, Qi Teng, Hekai Zhang, Linfeng Du, Shuai Chen, Md Zakirul Alam Bhuiyan, Jianhua Li und Mingsheng Liu. „Hierarchical Graph Transformer-Based Deep Learning Model for Large-Scale Multi-Label Text Classification“. IEEE Access 8 (2020): 30885–96. http://dx.doi.org/10.1109/access.2020.2972751.
Der volle Inhalt der QuelleSohrab, Mohammad Golam, Makoto Miwa und Yutaka Sasaki. „IN-DEDUCTIVE and DAG-Tree Approaches for Large-Scale Extreme Multi-label Hierarchical Text Classification“. Polibits 54 (31.07.2016): 61–70. http://dx.doi.org/10.17562/pb-54-8.
Der volle Inhalt der QuelleDeng, Jiawen, und Fuji Ren. „Hierarchical Network with Label Embedding for Contextual Emotion Recognition“. Research 2021 (06.01.2021): 1–9. http://dx.doi.org/10.34133/2021/3067943.
Der volle Inhalt der QuelleLiu, Zhenyu, Chaohong Lu, Haiwei Huang, Shengfei Lyu und Zhenchao Tao. „Hierarchical Multi-Granularity Attention- Based Hybrid Neural Network for Text Classification“. IEEE Access 8 (2020): 149362–71. http://dx.doi.org/10.1109/access.2020.3016727.
Der volle Inhalt der QuelleDissertationen zum Thema "Hierarchical Multi-label Text Classification"
Dendamrongvit, Sareewan. „Induction in Hierarchical Multi-label Domains with Focus on Text Categorization“. Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/542.
Der volle Inhalt der QuelleBorggren, Lukas. „Automatic Categorization of News Articles With Contextualized Language Models“. Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177004.
Der volle Inhalt der QuelleRazavi, Amir Hossein. „Automatic Text Ontological Representation and Classification via Fundamental to Specific Conceptual Elements (TOR-FUSE)“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23061.
Der volle Inhalt der QuelleWei, Zhihua. „The research on chinese text multi-label classification“. Thesis, Lyon 2, 2010. http://www.theses.fr/2010LYO20025/document.
Der volle Inhalt der QuelleLa thèse est centrée sur la Classification de texte, domaine en pleine expansion, avec de nombreuses applications actuelles et potentielles. Les apports principaux de la thèse portent sur deux points : Les spécificités du codage et du traitement automatique de la langue chinoise : mots pouvant être composés de un, deux ou trois caractères ; absence de séparation typographique entre les mots ; grand nombre d’ordres possibles entre les mots d’une phrase ; tout ceci aboutissant à des problèmes difficiles d’ambiguïté. La solution du codage en «n-grams »(suite de n=1, ou 2 ou 3 caractères) est particulièrement adaptée à la langue chinoise, car elle est rapide et ne nécessite pas les étapes préalables de reconnaissance des mots à l’aide d’un dictionnaire, ni leur séparation. La classification multi-labels, c'est-à-dire quand chaque individus peut être affecté à une ou plusieurs classes. Dans le cas des textes, on cherche des classes qui correspondent à des thèmes (topics) ; un même texte pouvant être rattaché à un ou plusieurs thème. Cette approche multilabel est plus générale : un même patient peut être atteint de plusieurs pathologies ; une même entreprise peut être active dans plusieurs secteurs industriels ou de services. La thèse analyse ces problèmes et tente de leur apporter des solutions, d’abord pour les classifieurs unilabels, puis multi-labels. Parmi les difficultés, la définition des variables caractérisant les textes, leur grand nombre, le traitement des tableaux creux (beaucoup de zéros dans la matrice croisant les textes et les descripteurs), et les performances relativement mauvaises des classifieurs multi-classes habituels
文本分类是信息科学中一个重要而且富有实际应用价值的研究领域。随着文本分类处理内容日趋复杂化和多元化,分类目标也逐渐多样化,研究有效的、切合实际应用需求的文本分类技术成为一个很有挑战性的任务,对多标签分类的研究应运而生。本文在对大量的单标签和多标签文本分类算法进行分析和研究的基础上,针对文本表示中特征高维问题、数据稀疏问题和多标签分类中分类复杂度高而精度低的问题,从不同的角度尝试运用粗糙集理论加以解决,提出了相应的算法,主要包括:针对n-gram作为中文文本特征时带来的维数灾难问题,提出了两步特征选择的方法,即去除类内稀有特征和类间特征选择相结合的方法,并就n-gram作为特征时的n值选取、特征权重的选择和特征相关性等问题在大规模中文语料库上进行了大量的实验,得出一些有用的结论。针对文本分类中运用高维特征表示文本带来的分类效率低,开销大等问题,提出了基于LDA模型的多标签文本分类算法,利用LDA模型提取的主题作为文本特征,构建高效的分类器。在PT3多标签分类转换方法下,该分类算法在中英文数据集上都表现出很好的效果,与目前公认最好的多标签分类方法效果相当。针对LDA模型现有平滑策略的随意性和武断性的缺点,提出了基于容差粗糙集的LDA语言模型平滑策略。该平滑策略首先在全局词表上构造词的容差类,再根据容差类中词的频率为每类文档的未登录词赋予平滑值。在中英文、平衡和不平衡语料库上的大量实验都表明该平滑方法显著提高了LDA模型的分类性能,在不平衡语料库上的提高尤其明显。针对多标签分类中分类复杂度高而精度低的问题,提出了一种基于可变精度粗糙集的复合多标签文本分类框架,该框架通过可变精度粗糙集方法划分文本特征空间,进而将多标签分类问题分解为若干个两类单标签分类问题和若干个标签数减少了的多标签分类问题。即,当一篇未知文本被划分到某一类文本的下近似区域时,可以直接用简单的单标签文本分类器判断其类别;当未知文本被划分在边界域时,则采用相应区域的多标签分类器进行分类。实验表明,这种分类框架下,分类的精确度和算法效率都有较大的提高。本文还设计和实现了一个基于多标签分类的网页搜索结果可视化系统(MLWC),该系统能够直接调用搜索引擎返回的搜索结果,并采用改进的Naïve Bayes多标签分类算法实现实时的搜索结果分类,使用户可以快速地定位搜索结果中感兴趣的文本。
Burkhardt, Sophie [Verfasser]. „Online Multi-label Text Classification using Topic Models / Sophie Burkhardt“. Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1173911235/34.
Der volle Inhalt der QuelleSendur, Zeynel. „Text Document Categorization by Machine Learning“. Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_theses/209.
Der volle Inhalt der QuelleArtmann, Daniel. „Applying machine learning algorithms to multi-label text classification on GitHub issues“. Thesis, Högskolan i Halmstad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43097.
Der volle Inhalt der QuelleLi, Xin. „Multi-label Learning under Different Labeling Scenarios“. Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/350482.
Der volle Inhalt der QuellePh.D.
Traditional multi-class classification problems assume that each instance is associated with a single label from category set Y where |Y| > 2. Multi-label classification generalizes multi-class classification by allowing each instance to be associated with multiple labels from Y. In many real world data analysis problems, data objects can be assigned into multiple categories and hence produce multi-label classification problems. For example, an image for object categorization can be labeled as 'desk' and 'chair' simultaneously if it contains both objects. A news article talking about the effect of Olympic games on tourism industry might belong to multiple categories such as 'sports', 'economy', and 'travel', since it may cover multiple topics. Regardless of the approach used, multi-label learning in general requires a sufficient amount of labeled data to recover high quality classification models. However due to the label sparsity, i.e. each instance only carries a small number of labels among the label set Y, it is difficult to prepare sufficient well-labeled data for each class. Many approaches have been developed in the literature to overcome such challenge by exploiting label correlation or label dependency. In this dissertation, we propose a probabilistic model to capture the pairwise interaction between labels so as to alleviate the label sparsity. Besides of the traditional setting that assumes training data is fully labeled, we also study multi-label learning under other scenarios. For instance, training data can be unreliable due to missing values. A conditional Restricted Boltzmann Machine (CRBM) is proposed to take care of such challenge. Furthermore, labeled training data can be very scarce due to the cost of labeling but unlabeled data are redundant. We proposed two novel multi-label learning algorithms under active setting to relieve the pain, one for standard single level problem and one for hierarchical problem. Our empirical results on multiple multi-label data sets demonstrate the efficacy of the proposed methods.
Temple University--Theses
Průša, Petr. „Multi-label klasifikace textových dokumentů“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-412872.
Der volle Inhalt der QuelleRios, Anthony. „Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records“. UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/71.
Der volle Inhalt der QuelleBuchteile zum Thema "Hierarchical Multi-label Text Classification"
Zhao, Rui, Xiao Wei, Cong Ding und Yongqi Chen. „Hierarchical Multi-label Text Classification: Self-adaption Semantic Awareness Network Integrating Text Topic and Label Level Information“. In Knowledge Science, Engineering and Management, 406–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82147-0_33.
Der volle Inhalt der QuelleMa, Yinglong, Jingpeng Zhao und Beihong Jin. „A Hierarchical Fine-Tuning Approach Based on Joint Embedding of Words and Parent Categories for Hierarchical Multi-label Text Classification“. In Artificial Neural Networks and Machine Learning – ICANN 2020, 746–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61616-8_60.
Der volle Inhalt der QuelleSlavkov, Ivica, Jana Karcheska, Dragi Kocev, Slobodan Kalajdziski und Sašo Džeroski. „ReliefF for Hierarchical Multi-label Classification“. In New Frontiers in Mining Complex Patterns, 148–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_10.
Der volle Inhalt der QuelleAnanpiriyakul, Thanawut, Piyapan Poomsirivilai und Peerapon Vateekul. „Label Correction Strategy on Hierarchical Multi-Label Classification“. In Machine Learning and Data Mining in Pattern Recognition, 213–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08979-9_17.
Der volle Inhalt der QuelleAlaydie, Noor, Chandan K. Reddy und Farshad Fotouhi. „Exploiting Label Dependency for Hierarchical Multi-label Classification“. In Advances in Knowledge Discovery and Data Mining, 294–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30217-6_25.
Der volle Inhalt der QuelleLuo, Jiayu, Junqiao Hu, Yuman Zhang, Shuihuan Ye und Xinyi Xu. „Multi-label Classification Based on Label Hierarchical Compression“. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 1464–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_158.
Der volle Inhalt der QuelleHrala, Michal, und Pavel Král. „Multi-label Document Classification in Czech“. In Text, Speech, and Dialogue, 343–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40585-3_44.
Der volle Inhalt der QuelleMadjarov, Gjorgji, Vedrana Vidulin, Ivica Dimitrovski und Dragi Kocev. „Web Genre Classification via Hierarchical Multi-label Classification“. In Intelligent Data Engineering and Automated Learning – IDEAL 2015, 9–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24834-9_2.
Der volle Inhalt der QuelleStepišnik, Tomaž, und Dragi Kocev. „Hyperbolic Embeddings for Hierarchical Multi-label Classification“. In Lecture Notes in Computer Science, 66–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59491-6_7.
Der volle Inhalt der Quelleda Silva, Luan V. M., und Ricardo Cerri. „Feature Selection for Hierarchical Multi-label Classification“. In Advances in Intelligent Data Analysis XIX, 196–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74251-5_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hierarchical Multi-label Text Classification"
Huang, Wei, Enhong Chen, Qi Liu, Yuying Chen, Zai Huang, Yang Liu, Zhou Zhao, Dan Zhang und Shijin Wang. „Hierarchical Multi-label Text Classification“. In CIKM '19: The 28th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357384.3357885.
Der volle Inhalt der QuelleBanerjee, Siddhartha, Cem Akkaya, Francisco Perez-Sorrosal und Kostas Tsioutsiouliklis. „Hierarchical Transfer Learning for Multi-label Text Classification“. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-1633.
Der volle Inhalt der QuelleRen, Zhaochun, Maria-Hendrike Peetz, Shangsong Liang, Willemijn van Dolen und Maarten de Rijke. „Hierarchical multi-label classification of social text streams“. In SIGIR '14: The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2600428.2609595.
Der volle Inhalt der QuelleAly, Rami, Steffen Remus und Chris Biemann. „Hierarchical Multi-label Classification of Text with Capsule Networks“. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-2045.
Der volle Inhalt der QuelleBaker, Simon, und Anna Korhonen. „Initializing neural networks for hierarchical multi-label text classification“. In BioNLP 2017. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/w17-2339.
Der volle Inhalt der QuelleLiang, Xin, Dawei Cheng, Fangzhou Yang, Yifeng Luo, Weining Qian und Aoying Zhou. „F-HMTC: Detecting Financial Events for Investment Decisions Based on Neural Hierarchical Multi-Label Text Classification“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/619.
Der volle Inhalt der QuelleShen, Jiaming, Wenda Qiu, Yu Meng, Jingbo Shang, Xiang Ren und Jiawei Han. „TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names“. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.naacl-main.335.
Der volle Inhalt der QuelleMao, Yuning, Jingjing Tian, Jiawei Han und Xiang Ren. „Hierarchical Text Classification with Reinforced Label Assignment“. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-1042.
Der volle Inhalt der QuelleZhang, Qiang, Bo Chai, Bochuan Song und Jingpeng Zhao. „A Hierarchical Fine-Tuning Based Approach for Multi-label Text Classification“. In 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). IEEE, 2020. http://dx.doi.org/10.1109/icccbda49378.2020.9095668.
Der volle Inhalt der QuelleLiu, Liqun, Funan Mu, Pengyu Li, Xin Mu, Jing Tang, Xingsheng Ai, Ran Fu, Lifeng Wang und Xing Zhou. „NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text Classification Toolkit“. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-3015.
Der volle Inhalt der Quelle