Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heterotrophic culture“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heterotrophic culture" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heterotrophic culture"
Wang, Jing Han, Hai Zhen Yang und Feng Wang. „Potential of Mixotrophic Cultivation of Chlorella sorokiniana for Biodiesel Production“. Advanced Materials Research 779-780 (September 2013): 1509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.1509.
Der volle Inhalt der QuelleWang, Jing Han, Hai Zhen Yang und Feng Wang. „Mixotrophic Cultivation of Scenedesmus sp. as Biodiesel Feedstock“. Advanced Materials Research 777 (September 2013): 268–73. http://dx.doi.org/10.4028/www.scientific.net/amr.777.268.
Der volle Inhalt der QuelleWang, Kaixuan, Zhongjie Wang, Yi Ding, Youzhi Yu, Yali Wang, Yahong Geng, Yeguang Li und Xiaobin Wen. „Optimization of Heterotrophic Culture Conditions for the Algae Graesiella emersonii WBG-1 to Produce Proteins“. Plants 12, Nr. 12 (09.06.2023): 2255. http://dx.doi.org/10.3390/plants12122255.
Der volle Inhalt der QuelleSedlacek, Christopher J., Susanne Nielsen, Kenneth D. Greis, Wendy D. Haffey, Niels Peter Revsbech, Tomislav Ticak, Hendrikus J. Laanbroek und Annette Bollmann. „Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79“. Applied and Environmental Microbiology 82, Nr. 15 (27.05.2016): 4776–88. http://dx.doi.org/10.1128/aem.01171-16.
Der volle Inhalt der QuelleCorreia, Nádia, Hugo Pereira, Peter S. C. Schulze, Monya M. Costa, Gonçalo E. Santo, Inês Guerra, Mafalda Trovão et al. „Heterotrophic and Photoautotrophic Media Optimization Using Response Surface Methodology for the Novel Microalga Chlorococcum amblystomatis“. Applied Sciences 13, Nr. 4 (06.02.2023): 2089. http://dx.doi.org/10.3390/app13042089.
Der volle Inhalt der QuelleCupo, Adelaide, Simone Landi, Salvatore Morra, Genoveffa Nuzzo, Carmela Gallo, Emiliano Manzo, Angelo Fontana und Giuliana d’Ippolito. „Autotrophic vs. Heterotrophic Cultivation of the Marine Diatom Cyclotella cryptica for EPA Production“. Marine Drugs 19, Nr. 7 (23.06.2021): 355. http://dx.doi.org/10.3390/md19070355.
Der volle Inhalt der QuelleGao, Yifan, Yuan Li, Yan Yang, Jia Feng, Li Ji und Shulian Xie. „Effects of Trophic Modes on the Lipid Accumulation of Parachlorella kessleri TY“. Fermentation 9, Nr. 10 (03.10.2023): 891. http://dx.doi.org/10.3390/fermentation9100891.
Der volle Inhalt der QuelleNishimura, Takao, Raghunath Ramu Pachpande und Tatsuichi Iwamura. „A heterotrophic synchronous culture of Chlorella.“ Cell Structure and Function 13, Nr. 3 (1988): 207–15. http://dx.doi.org/10.1247/csf.13.207.
Der volle Inhalt der QuellePark, Jeong-Eun, Shan Zhang, Thi Hiep Han und Sun-Jin Hwang. „The Contribution Ratio of Autotrophic and Heterotrophic Metabolism during a Mixotrophic Culture of Chlorella sorokiniana“. International Journal of Environmental Research and Public Health 18, Nr. 3 (02.02.2021): 1353. http://dx.doi.org/10.3390/ijerph18031353.
Der volle Inhalt der QuelleKorozi, Evagelina, Vasiliki Tsagou, Io Kefalogianni, Giorgos Markou, Dimitris Antonopoulos, Lambis Chakalis, Yannis Kotzamanis und Iordanis Chatzipavlidis. „Continuous Culture of Auxenochlorella protothecoides on Biodiesel Derived Glycerol under Mixotrophic and Heterotrophic Conditions: Growth Parameters and Biochemical Composition“. Microorganisms 10, Nr. 3 (28.02.2022): 541. http://dx.doi.org/10.3390/microorganisms10030541.
Der volle Inhalt der QuelleDissertationen zum Thema "Heterotrophic culture"
Camarena, Cristobal. „Lutein production and extraction improvements from a heterotrophic culture of scenedesmus almeriensis“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST085.
Der volle Inhalt der QuelleMicroalgae are positioned as a biotechnological solution to major problems ofthis century, offering answers and alternatives in areas like malnutrition, foodshortages, climate change, and pollution. As photosynthetic organisms, microalgaesynthesize numerous compounds to harness sunlight for their metabolic functions,including lutein, a yellow carotenoid crucial for the human diet.Although lutein is a compound associated with the photosynthetic activity of microalgae,some species maintain the capacity to synthesize this important pigment even underheterotrophic conditions, allowing increased productivity of both biomass and lutein incultures supplemented with an organic carbon source. Scenedesmus almeriensis has been reported as a good lutein producer under phototrophic conditions, but its low growth rate compared to other microalgae species has hindered its potential.This thesis presents results of the lutein productivity obteained from a heterotrophicculture of Scenedesmus almeriensis, both at laboratory and pre-pilot scale. In addition toachieving high lutein productivity values, its larger cell size and fragility simplify biomassharvesting and pigment extraction. A simplified method for lutein extraction adaptedto this species is also presented. This process uses ethanol as an extraction solvent andrequires less time and energy, which represents environmental and product acceptanceadvantages
溫志友 und Zhiyou Wen. „A high yield and productivity strategy for eicosapentaenoic acid production by the diatom Nitzschia laevis in heterotrophic culture“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242418.
Der volle Inhalt der QuelleWen, Zhiyou. „A high yield and productivity strategy for eicosapentaenoic acid production by the diatom Nitzschia laevis in heterotrophic culture“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23242097.
Der volle Inhalt der QuelleBerthold, Erwin David. „Enhancing Algal Biomass and Lipid Production through Bacterial and Fungal Co-Culture“. FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2563.
Der volle Inhalt der QuelleFuller, Andrew Kenneth Radburne. „The grazing and growth rates of some marine protozoa measured in batch and continuous culture with particular reference to the heterotrophic dinoflagellate Oxyrrhis marina“. Thesis, Royal Holloway, University of London, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325771.
Der volle Inhalt der QuelleZhang, Jing. „Development of Chlorella vulgaris and Saccharomyces cerevisiae in immobilized cultures“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC034.
Der volle Inhalt der QuelleChlorella vulgaris (C. vulgaris) is a model organism that has high commercial potential in the food and energy field, with proved feasibility of cultures as biofilms and yeast/ microalgae co-culture for in situ CO2 mitigation in biotechnological processes. This PhD work focuses on immobilized colonies in pure or mixed cultures. It proposes a better understanding of the interactions within and between colonies, with the ultimate goal of understanding and optimizing co-cultures.To archive these goals, a comprehensive protocol and required innovative experimental devices were developed including inoculation techniques, immobilized culture devices with gas sensors, 3-D imaging using a structured-light microscope, image processing, calibrated gas balance equation and data analysis. Care was also taken regarding incubation conditions, determination of dry mass, glucose concentration, cell size and density.Firstly, the development of single C. vulgaris colonies under heterotrophic conditions was studied. Based on the biological model proposed for the growth dynamics in height and radius, we concluded that the colonies expanded at a constant rate in the horizontal direction and a decreasing rate in the vertical direction. The trends are consistent with the cumulative effects of glucose and oxygen availability. A spherical cap best describes the shape of the colonies during the growth period. The intraspecies interaction of C. vulgaris was investigated by growing several colonies on the same plate with different initial separation distances: 1.5 mm, 3mm, and 15 mm. No significant effects of colony merging were observed on the growth rates in radius and height.Then, the effect of light was tested in two ways: presence of light throughout the culture and exposition to light after a first, purely heterotrophic, period. The shape of colony is significantly affected by the cultivation mode: the heterotrophic growth colony keeps a spherical cap, while the mixotrophic growth colony reaches a cylindrical shape, due to a radial growth almost completely stopped after some days. Thanks to the gas measurement device, the raw data were analyzed using a gas balance equation to obtain the biological source terms of O2 and CO2. Gas yield (mass ratio of gas to dry mass of cell) are proposed for the different growth conditions. A synergy is highlighted between photosynthesis at the top of the colony and heterotrophy at the base.The interspecies interaction of C. vulgaris and S. cerevisiae were studied at two levels: cell-cell level within the same colony and colony-colony level. At the colony-colony level, colonies of C. vulgaris and S. cerevisiae were inoculated with two different initial separation distances (3 mm and 15 mm). Colonies were observed continuously for one month. Even though additional investigation is needed, the observed growth and interaction seems to be mostly explained by the much larger growth rate of yeast. After merging S. cerevisiae colonies eventually envelop C. vulgaris colonies. At the cell-cell level, C. vulgaris and S. cerevisiae intermixed colonies were observed in 3D. Due to its fast grow, S. cerevisiae cells eventually dominate the whole colony, at the exception of some C. vulgaris cells present in the core of the colony and on the top. C. vulgaris cells almost stop growing when the nutrients are limited
Ip, Po-fung. „Elicitation of astaxanthin biosynthesis in dark-heterotrophic cultures of Chlorella zofingiensis“. Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34617048.
Der volle Inhalt der QuelleSanz, Sáez Isabel. „Contribution of marine heterotrophic cultured bacteria to microbial diversity and mercury detoxification“. Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671617.
Der volle Inhalt der QuelleLos océanos contienen aproximadamente un total de 10^29 células microbianas. Las bacterias marinas son responsables de la mayor parte de la respiración que se produce en el océano y son esenciales en los ciclos biogeoquímicos de la Tierra. Estudiar la diversidad bacteriana de los ecosistemas marinos y tener acceso a los genomas mediante estudios dependientes e independientes de cultivo es importante para descifrar el potencial metabólico de las bacterias marinas. Los cultivos nos aportan información sobre la fisiología bacteriana, ecología y contenido genómico, pero la mayoría de los esfuerzos en aislar bacteria marinas provienen de la zona fótica del océano, dejando las profundidades marinas menos exploradas. En esta tesis, técnicas estándar de cultivo han permitido crear una colección marina de bacterias heterótrofas (MARINHET), compuesta por más de 2000 aislados, recuperados de varias regiones oceanográficas, de varias profundidades (superficie, mesopelágico y batipelágico), y cubriendo varias estaciones y años. El Capítulo 1 describe su taxonomía, diversidad filogenética y biogeografía y revela que un 37% de las cepas son 100% idénticas en la secuencia parcial del gen ribosomal 16S (16S rRNA) entre la zona fótica (superficie) y afótica (mesopelágico y batipelágico). Además, hemos identificado Alteromonas y Erythrobacter entre los géneros marinos heterótrofos más comunes que recuperamos en cultivo usando un medio marino estándar. Las técnicas tradicionales de cultivo generalmente solo recuperan una fracción pequeña de las comunidades bacterianas naturales, fenómeno conocido como ‘la gran anomalía de recuento en placa’ y muchas de las cepas que se aíslan pertenecen a la biosfera rara. Sin embargo, no conocemos si estos patrones, normalmente descritos para las bacterias de superficie, también se aplican en las profundidades. En el Capítulo 2 he combinado resultados obtenidos mediante técnicas dependientes e independientes de cultivo comparando las secuencias del 16S rRNA de la colección MARINHET contra los fragmentos de secuenciación masiva del 16S rRNA (de amplicones y metagenomas), obtenidos de muestras globalmente distribuidas y de diferentes profundidades. Una mayor proporción de las bacterias del océano profundo son cultivables y una fracción importante de los aislados tiene preferencia a un estilo de vida adherido a partículas. Además, confirmamos que el dogma ‘menos del 1% de las bacterias son cultivables’ deber ser revisado ya que encontramos variabilidad en las muestras de profundidad, donde hasta un 3% de las células se han podido aislar. Los aislados bacterianos son un excelente material para aplicaciones biotecnológicas, como la biorremediación de zonas marinas contaminadas. El mercurio es un metal pesado tóxico y su forma más peligrosa, el metilmercurio (MeHg), se bioacumula en la cadena trófica marina. No obstante, se conoce muy poco la tolerancia de bacterias marinas frente al mercurio o la fisiológia de aquellas cepas que codifican los genes de resistencia (operón mer). El Capítulo 3 describe los resultados del mapeo funcional de los genes merA y merB, clave en la detoxificación, en una fracción de la colección MARINHET. Nos centramos en dos géneros marinos, con un potencial genético para la degradación del mercurio previamente descrito en la literatura, como son Alteromonas y Marinobacter. Desvelamos que los genes merAB están ampliamente distribuidos en diferentes regiones oceanográficas y en varias profundidades. Adicionalmente, hemos seleccionado una cepa de Alteromonas mediterranea para futuros estudios de biorremediación debido a su alta tolerancia y capacidad de degradación de diferentes formas de mercurio.
The world’s oceans sustain the life for an estimated total of 10^29 microbial cells. Marine bacteria are responsible for most part of the ocean respiration and are key in most biogeochemical cycles of the Earth. Accordingly, the study of the bacterial diversity present in different marine ecosystems is essential, and having access to their genomes through isolation or genomic centric studies is important to decipher their metabolic potential. Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. In this thesis, standard plating techniques allowed to create a marine culture collection of heterotrophic bacteria (MARINHET). More than 2000 isolates were retrieved from samples collected from a variety of oceanographic regions, from different depths including surface, mesopelagic and bathypelagic waters, and also covering different seasons and years. Chapter 1 describes the taxonomy, the phylogenetic diversity and the biogeography of culturable heterotrophic marine bacteria, and reveals that an important percentage of the strains (37%) are 100% identical in their partial 16S rRNA gene between photic and aphotic layers. In addition, we identified Alteromonas and Erythrobacter genera as the most frequently retrieved heterotrophic bacteria from the ocean in standard marine agar medium. It is a long-standing observation that traditional culture techniques only retrieve a small fraction of the microbial diversity found in natural environments including marine ecosystems, what is known as ‘the great plate count anomaly’. In addition, most of the retrieved isolates belong to the so-called rare biosphere. However, we do not know if these patterns, usually described for bacteria living in the photic ocean, also apply for the deep ocean bacteria. In Chapter 2 of this thesis, I combined results from culture-dependent and -independent techniques by comparing the 16S rRNA partial sequences of the MARINHET isolates with 16S rRNA amplicon Illumina TAGs (16S iTAGs) and metagenomic TAGs (miTAGs) from surface, mesopelagic and bathypelagic samples globally distributed. A high proportion of bacteria inhabiting the deep ocean could be retrieved by pure culture techniques and a significant fraction of the isolates preferred a lifestyle attached to particles. Additionally, I revised the axiom that ‘less than 1% of bacteria can be cultured’, finding variability between mesopelagic and bathypelagic samples, where up to 3% of the cells could be cultured. Bacterial isolates also represent a valuable genetic reservoir for biotechnology applications, such as bioremediation strategies of marine polluted environments. Mercury is one of the most toxic heavy metals in the planet and its most dangerous form, methylmercury (MeHg), is being bioaccumulated in the marine food web. However, little is known about the tolerance capacity and phenotypic characterization of marine bacteria codifying the mercury resistance operon (mer operon). Chapter 3 describes the functional screening of merA and merB genes, which are key in the mercury detoxification process, in well know marine genera with described genetic potential for mercury detoxification, such as Alteromonas and Marinobacter. I reported that the merAB genes from these two genera are widely distributed in different oceanographic regions and depths. In addition, I selected a promising candidate, phylogenetically affiliated to Alteromonas mediterranea, for future bioremediation studies due to its high tolerance and degradation ability of different mercury forms.
Universitat Autònoma de Barcelona. Programa de Doctorat en Microbiologia
Strate, Jessica Lorene. „Characterization and activity comparisons of methanotrophic-heterotrophic mixed cultures derived from a landfill environment“. [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009061.
Der volle Inhalt der QuelleDucos, Jean-Paul. „Croissance et metabolisme primaire de suspensions heterotrophes de catharanthus roseus en fermenteur : importance de la phase gazeuse“. Toulouse, INSA, 1986. http://www.theses.fr/1986ISAT0031.
Der volle Inhalt der QuelleBücher zum Thema "Heterotrophic culture"
Kirchman, David L. Microbial growth, biomass production, and controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0008.
Der volle Inhalt der QuelleBuchteile zum Thema "Heterotrophic culture"
Kovar, Karin, Pavel Přibyl und Markus Wyss. „Microalgae Grown under Heterotrophic and Mixotrophic Conditions“. In Industrial Scale Suspension Culture of Living Cells, 164–85. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527683321.ch04.
Der volle Inhalt der QuelleImseng, Nicole, Stefan Schillberg, Cornelia Schürch, Daniel Schmid, Kai Schütte, Gilbert Gorr, Dieter Eibl und Regine Eibl. „Suspension Culture of Plant Cells Under Heterotrophic Conditions“. In Industrial Scale Suspension Culture of Living Cells, 224–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527683321.ch07.
Der volle Inhalt der QuelleOgbonna, James Chukwuma, und Mark P. McHenry. „Culture Systems Incorporating Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae“. In Biofuel and Biorefinery Technologies, 63–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16640-7_4.
Der volle Inhalt der QuelleBenlloch, Susana, Francisco Rodríguez-Valera, Silvia G. Acinas und Antonio J. Martínez-Murcia. „Heterotrophic bacteria, activity and bacterial diversity in two coastal lagoons as detected by culture and 16S rRNA genes PCR amplification and partial sequencing“. In Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.), 3–17. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1744-6_1.
Der volle Inhalt der QuelleCortese, Enrico, Luca Carraretto, Barbara Baldan und Lorella Navazio. „Arabidopsis Photosynthetic and Heterotrophic Cell Suspension Cultures“. In Methods in Molecular Biology, 167–85. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0880-7_8.
Der volle Inhalt der QuelleSingh, Amit K., und Daniel C. Ducat. „Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes“. In Plant Synthetic Biology, 277–91. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1791-5_16.
Der volle Inhalt der QuelleMannan, R. Mannar, und Himadri B. Pakrasi. „The Photosynthetic Apparatus in Autotrophic and Heterotrophic Cultures of Anabaena Variabilis ATCC 29413“. In Research in Photosynthesis, 425–28. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-009-0383-8_95.
Der volle Inhalt der QuelleGu, Ji-Dong, und Yoko Katayama. „Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection“. In Microorganisms in the Deterioration and Preservation of Cultural Heritage, 37–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69411-1_2.
Der volle Inhalt der QuelleWen, Z. Y., und F. Chen. „Optimization of Nitrogen Sources for the Production of Eicosapentaenoic Acid by the Diatom Nitzschia Laevis in Heterotrophic Cultures“. In Algae and their Biotechnological Potential, 55–68. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9835-4_3.
Der volle Inhalt der QuelleHäuser, Christiane, Johannes Jung und Klaus Grossmann. „Changes in abscisic acid levels of heterotrophic cell suspension cultures caused by the plant growth retardant BAS 111… W and possible physiological consequences“. In Progress in Plant Growth Regulation, 173–79. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2458-4_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heterotrophic culture"
Savanina, Y. V. „INTENSIFICATION OF BIOLOGICAL SELF-CLEANING UNDER CONDITIONS OF SLOPE DISCHARGE.“ In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY, 225–29. LLC Institute Information Technologies, 2024. http://dx.doi.org/10.47501/978-5-6044060-4-5.225-229.
Der volle Inhalt der QuelleWei, X., W. Yang und S. Choi. „A HIGH POWER-DENSITY, SELF-SUSTAINED HYBRID BIO-SOLAR CELL WITH CO-CULTURE OF HETEROTROPHIC AND PHOTOSYNTHETIC BACTERIA“. In 2016 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2016. http://dx.doi.org/10.31438/trf.hh2016.106.
Der volle Inhalt der QuelleMolokwane, Pulane E., und Evans M. N. Chirwa. „Development of a Carbon-14 Bioseperation Technique for Cleanup of Nuclear Graphite“. In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7164.
Der volle Inhalt der QuelleMARONEZE, M. M., G. J. G. TEIXEIRA, C. NEVES, L. Q. ZEPKA, M. I. QUEIROZ und E. JACOB-LOPES. „EVALUATION OF SUBSTRATE LIMITATION KINETICS IN HETEROTROPHIC MICROALGAL CULTURES“. In XI Congresso Brasileiro de Engenharia Química em Iniciação Científica. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeqic2015-314-33907-260288.
Der volle Inhalt der QuelleStramski, Dariusz, Marian Sedlak, David Tsai, Eric J. Amis und Dale A. Kiefer. „Dynamic light scattering by cultures of heterotrophic marine bacteria“. In San Diego '92, herausgegeben von Gary D. Gilbert. SPIE, 1992. http://dx.doi.org/10.1117/12.140688.
Der volle Inhalt der QuelleMaroneze, Mariana Manzoni, Cristina Neves, Leila Queiroz Zepka, Maria Isabel Queiroz und Eduardo Jacob Lopes. „EVALUATION OF SUBSTRATE LIMITATION KINETICS IN HETEROTROPHIC MICROALGAL CULTURES“. In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-33510.
Der volle Inhalt der QuelleElvert, Marcus, Qingzeng Zhu, Jonathan Gropp, Heidi Taubner, Itay Halevy, Kai-Uwe Hinrichs und Gunter Wegener. „Clues on methane’s biogeochemistry and associated heterotrophic microbes in marine sediments from AOM enrichment cultures“. In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.16918.
Der volle Inhalt der QuelleJurminskaia, Olga, Igor Shubernetskii und Nadejda Andreev. „Effect of lactobacilli on autochthonous microflora of fish ponds“. In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, 2022. http://dx.doi.org/10.52757/imb22.47.
Der volle Inhalt der QuelleIungin, Olga, Ievgeniia Prekrasna, Ihor Bortyanuy, Valeriia Maslak und Saulius Mickevičius. „Plant Growth-Promoting Characteristics of Antarctic Endophytic Bacteria“. In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.11.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heterotrophic culture"
Phelps, T. J., D. Ringelberg, A. T. Mikell, D. C. White und C. B. Fliermans. Mineralization of trichloroethylene by heterotrophic enrichment cultures. Office of Scientific and Technical Information (OSTI), Dezember 1988. http://dx.doi.org/10.2172/666263.
Der volle Inhalt der QuelleShpigel, Muki, Allen Place, William Koven, Oded (Odi) Zmora, Sheenan Harpaz und Mordechai Harel. Development of Sodium Alginate Encapsulation of Diatom Concentrates as a Nutrient Delivery System to Enhance Growth and Survival of Post-Larvae Abalone. United States Department of Agriculture, September 2001. http://dx.doi.org/10.32747/2001.7586480.bard.
Der volle Inhalt der QuelleKoven, William, Gordon Grau, Benny Ron und Tetsuya Hirano. Improving fry quality, survival and growth in commercially farmed fish by dietary stimulation of thyroid hormone production in premetamorphosing larvae. United States Department of Agriculture, 2004. http://dx.doi.org/10.32747/2004.7695856.bard.
Der volle Inhalt der Quelle