Auswahl der wissenschaftlichen Literatur zum Thema „Hétérotopie de bande sous-corticale“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hétérotopie de bande sous-corticale" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Hétérotopie de bande sous-corticale"

1

Aoun, A., C. Goizet, B. Arveiler, E. Sarrazin und C. Derancourt. „Incontinentia pigmenti avec hétérotopie sous-corticale en bande“. Archives de Pédiatrie 22, Nr. 1 (Januar 2015): 109–10. http://dx.doi.org/10.1016/j.arcped.2014.10.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Aoun, A., C. Goizet, B. Arveiler, C. Derancourt und E. Sarrazin. „Incontinentia pigmenti avec hétérotopie sous-corticale en bande : première observation“. Annales de Dermatologie et de Vénéréologie 139, Nr. 12 (Dezember 2012): B180. http://dx.doi.org/10.1016/j.annder.2012.10.292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pedron, L., und M. Bubrovszky. „Asymétrie d’activité frontale de la bande alpha et dépression“. European Psychiatry 30, S2 (November 2015): S120. http://dx.doi.org/10.1016/j.eurpsy.2015.09.230.

Der volle Inhalt der Quelle
Annotation:
ContexteLa dépression est une maladie hétérogène, au niveau clinique et physiopathologique. La recherche de biomarqueurs des troubles affectifs apporterait une meilleure compréhension des mécanismes sous-jacents et améliorerait la prise en charge. L’asymétrie de l’activité frontale de la bande de fréquence alpha (frontal alpha asymmetry [FAA]) basale est une mesure psychophysiologique issue de l’analyse spectrale de la bande de fréquence alpha à partir d’électroencéphalogrammes. Elle serait une mesure stable de la motivation (d’approche avec une hyperactivité frontale gauche relative et de retrait avec une hyperactivité droite frontale relative) et des émotions. Elle témoignerait aussi de dispositions individuelles émotionnelles et comportementales, et d’une vulnérabilité psychopathologique à la dépression . Une hyperactivité frontale droite (ou une hypoactivité gauche) relative basale serait associée à la dépression, particulièrement au site frontal médian F3/F4 , malgré une certaine inconsistance de la littérature.MéthodeNous avons mesuré la FAA (calcul de la différence de puissance alpha entre 2 électrodes homologues) au site frontal médian F3/F4, dans un groupe de patients déprimés et un groupe contrôle. Nous attendions une différence significative entre ces 2 groupes, dans le sens d’une hypoactivité frontale gauche relative dans le groupe de patients.RésultatsNous avons retrouvé une différence significative de FAA entre les 2 groupes, au site F3/F4 mais avec un pattern d’asymétrie opposé à celui attendu (hyperactivité corticale frontale gauche relative dans le groupe de patients).ConclusionLe pattern d’asymétrie retrouvé est en faveur d’une augmentation de la motivation d’approche. Il est similaire au pattern d’asymétrie de patients souffrant de troubles bipolaires . Le pattern qui était attendu dans le groupe de patients déprimés signait une diminution de la motivation d’approche, et donc une baisse de la sensibilité à la récompense dans la dépression (anhédonie) .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Szurhaj, William, Etienne Labyt, Jean‐Louis Bourriez, François Cassini, Luc Defebvre, Jean‐Jacques Hauser, Jean‐Daniel Guieu und Philippe Derambure. „Variations de l'activité des rythmes EEG en relation à un événement. Application à la physiologie et à la pathologie du mouvement“. Epileptic Disorders 3, SP1 (Dezember 2001). http://dx.doi.org/10.1684/j.1950-6945.2001.tb00412.x.

Der volle Inhalt der Quelle
Annotation:
RÉSUMÉ La traduction la plus classique d'un événement répété sur l'électroencéphalogramme (EEG) est le potentiel évoqué dont la mise en évidence repose sur le moyennage de l'EEG. La condition nécessaire à cette technique est qu'il existe une relation de phase entre le stimulus et le potentiel évoqué par ce stimulus. La réactivité des rythmes EEG induite par un événement ne peut donc pas être mise en évidence par une simple technique de moyennage, cette réactivité ne survenant pas toujours à la même phase du signal. L'étude de cette réactivité est possible par la méthode des Désynchronisations et Synchronisations Liées à l'Événement (DLE/SLE) proposée par Pfurtscheller et Aranibar en 1977. Cette méthode consiste à mesurer l'évolution temporelle de la puissance du signal EEG dans une bande de fréquence donnée, avant, pendant, et après un événement. La DLE correspond à l'atténuation d'amplitude d'un rythme EEG en rapport avec un événement. Inversement, une augmentation d'amplitude en relation avec l'événement correspond à une SLE. Les DLE traduisent l'activation des aires corticales sous‐jacentes. Les SLE traduiraient en partie la mise au repos du cortex, et probablement également des phénomènes de réafférentation somesthésique. Cette méthode peut être appliquée à l'étude de nombreux processus: mnésiques, auditifs, attentionnels, anticipatoires et moteurs. Ainsi un mouvement volontaire auto‐commandé de la main dominante s'accompagne d'une DLE précoce des rythmes mu et bêta précédant le mouvement de respectivement 2 000 et 1 500 ms, enregistrée en regard de la région centrale contralatéral. Cette DLE devient bilatérale au début du mouvement et est maximale à la fin de celui‐ci. Elle est alors suivie d'une SLE des rythmes bêta. Nous montrons que ces phénomènes de DLE/SLE varient en fonction du type de mouvement, et permettent d'explorer les modifications de l'excitabilité corticale rencontrées au cours de la maladie de Parkinson et de l'épilepsie avec crises motrices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Hétérotopie de bande sous-corticale"

1

Martineau, Fanny. „Arrêt précoce de la migration neuronale corticale : conséquences cellulaires et comportementales“. Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0456.

Der volle Inhalt der Quelle
Annotation:
La migration radiaire est un des processus clefs de la corticogenèse menant à l’établissement d’un cortex en six couches chez les mammifères. La compréhension de ce mécanisme complexe est nécessaire à une meilleure appréhension du développement cortical. Dans ce travail de thèse, j’ai étudié la migration des neurones pyramidaux du cortex sous deux angles distincts. La 1ère partie se place d’un point de vue développemental en appréciant comment le positionnement laminaire résultant d’une migration normale ou anormale affecte la maturation neuronale. La 2nde partie se concentre sur une pathologie migratoire, l’hétérotopie en bande sous-corticale, et les altérations cognitives parfois associées à cette malformation. Pour ces deux projets, la migration neuronale a été altérée chez le rat par knockdown (KD) in utero de la doublecortine (Dcx), un effecteur majeur de la migration. Les neurones positionnés anormalement présentent une orientation incorrecte, un arbre dendritique moins développé, une spinogenère réduite et une altération morpho-fonctionnelle de la synaptogenèse glutamatergique. De plus, notre étude a mis en évidence l’implication de Dcx dans la dendritogenèse et la régulation fine des synapses glutamatergiques in vivo. Enfin, nous avons utilisé les rats Dcx-KD comme modèle d’hétérotopie en bande afin d’étudier comment un déficit de migration neuronale impacte le fonctionnement du cortex. La caractérisation comportementale, réalisée à l’aide d’une large gamme de tests, n’a pas mis en évidence de déficits majeurs des capacités motrices, somatosensorielles ou cognitives chez ces animaux
Radial migration is one of the key processes leading to the formation of a six-layered cortex in mammals. Understanding this mechanism is necessary to get a better grasp of cortical development. During my PhD, I studied neuronal migration of pyramidal neurons from two different points of views. The 1st part is related to fundamental biology and assesses how laminar misplacement resulting from migration failure influences neuronal maturation. The 2nd one focuses on pathology by investigating a migration disorder, subcortical band heterotopia, and associated cognitive deficits. For both projects, neuronal migration was impaired in rat through in utero knockdown (KD) of doublecortin (Dcx), a major effector of cortical migration. Misplaced neurons display an abnormal orientation, a simplified dendritic arbor, a decreased spinogenesis and morpho-functional alterations of glutamatergic synaptogenesis. Moreover, our study shows that Dcx plays a role in dendritogenesis, in shaping spine morphology and in fine-tuning glutamatergic synaptogenesis. Finally, we used Dcx-KD rats as an animal model of subcortical band heterotopia to assess how migration failure would impact cortical functions. The behavioral characterization carried out through a wide range of tests did not bring to light any major shortcoming regarding motor, somatosensory or cognitive abilities in these animals. Therefore, although Dcx-KD rats display a SBH and develop spontaneous seizures, it does not seem to recapitulate cognitive deficits found in patients
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Petit, Ludovic. „Rôles des neurones ectopiques et normotopiques dans la genèse des crises dans les hétérotopies en bandes“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4007.

Der volle Inhalt der Quelle
Annotation:
L'hétérotopie en bande sous-corticale (SBH) est une malformation caractérisée par la présence d'une bande de neurones ectopiques en regard du cortex normal ou normotopique. La plupart des patients ont une mutation d'un gène encodant une protéine indispensable à la migration des neurones. Les patients présentent une épilepsie pharmacorésistante. La chirurgie ne donne pas de résultats satisfaisants, le foyer épileptogène n'étant jamais clairement délimité. Un modèle de rat reproduisant les caractéristiques observées chez les patients à pu être généré. Même s'il est clair que le cortex normotopique et l'hétérotopie participent aux évènements épileptiformes, leur zone de genèse reste néanmoins inconnue. Le but de cette thèse a été de localiser l'origine de l'activité épileptiforme in vitro sur tranches de cerveau à l'aide d'une technique d'enregistrement multisite.Des activités épileptiformes (ILEs) ont été enregistrées à l'aide d'une technique d'enregistrement extracellulaire multisite à 60 canaux. Un outil d'analyse développé sous Matlab a ensuite permis de caractériser les ILEs et notamment leur origine et étendues spatiales. Après avoir identifié l'importance du cortex normotopique dans la genèse des ILEs, nous en avons supprimé l'excitabilité in vivo. Nous montrons que la surexpression de ces canaux dans les neurones ectopiques n'altère pas la susceptibilité aux crises des animaux concernés alors que la surexpression de ces canaux dans l'hétérotopie et dans le cortex normotopique améliore le phénotype épileptique. Nos résultats suggèrent ainsi un rôle majeur du cortex normotopique dans la genèse des activités épileptiques dans le syndrome du double cortex
Subcortical Band Heterotopia (SBH) is a cortical malformation formed when neocortical neurons prematurely stop their migration in the white matter, forming a heterotopic band below the normotopic cortex, and is generally associated with intractable epilepsy. Although it is clear that the band heterotopia and the overlying cortex both contribute to creating an abnormal circuit prone to generate epileptic discharges, it is less understood which part of this circuitry is the most critical. Here, we sought to identify the origin of epileptiform activity in a targeted genetic model of SBH in rats.Rats with SBH were generated by knocking‐down the Dcx gene into neocortical progenitors of rat embryos. Origin, spatial extent and laminar profile of bicuculline‐induced interictal‐like activity on neocortical slices were analyzed by using extracellular recordings from 60‐channels microelectrode arrays. Susceptibility to pentylenetetrazole‐induced seizures was assessed by electrocorticography in head‐restrained nonanaesthetized rats. We show that the band heterotopia does not constitute a primary origin for interictal‐like epileptiform activity in vitro and is dispensable for generating induced seizures in vivo. Further, we report that most interictal‐like discharges originating in the overlying cortex secondarily propagates to the band heterotopia. Importantly, we found that in vivo suppression of neuronal excitability in SBH does not alter the higher propensity of Dcx‐KD rats to display seizures. These results suggest a major role of the normotopic cortex over the band heterotopia in generating interictal epileptiform activity and seizures in brains with SBH
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zaidi, Donia. „Étude des mécanismes pathogéniques dépendants des microtubules dans les progéniteurs neuronaux conduisant aux malformations corticales“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS159.pdf.

Der volle Inhalt der Quelle
Annotation:
Les cellules de glie radiaire apicale (RG) sont des cellules clés du développement cortical, capables d'auto-renouvellement ou de génération neuronale, possédant un noyau restreint à la zone ventriculaire (VZ) qui migre en fonction des phases du cycle cellulaire via un phénomène nommé migration nucléaire intercinétique (MNI). Les RG ont une forme bipolaire, avec un long processus basal soutenant la migration neuronale et un court processus apical faisant face au ventricule où un cil primaire (PC), ancré à un centrosome modifié (‘corps basal’), émerge et sert de plateforme de signalisation. Des mutations génétiques peuvent altérer le fonctionnement des RG, affectant le développement cortical et conduisant à des malformations corticales. Ces malformations sont associées chez les patients à de l’épilepsie et à des déficiences intellectuelles. Il est donc important de déterminer comment les processus moléculaires et cellulaires mis en jeu au niveau des RG peuvent être perturbés par des mutations génétiques. Mon travail de thèse a porté sur l’étude de deux gènes mutés conduisant à deux malformations corticales rares. Tout d’abord, le gène codant pour la chaine lourde de la protéine motrice dynéine (DYNC1H1) a été retrouvé muté chez des patients présentant une malformation corticale complexe avec une microcéphalie (petit cerveau) et une dysgyrie (défauts de gyrifications). Lors de mon travail de thèse, j’ai étudié les RG à la mi-corticogenèse dans un modèle murin Knock-In (KI) pour ce gène, reproduisant une mutation faux sens retrouvée chez un patient, en le comparant avec un modèle murin muté pour ce même gène mais conduisant à des neuropathies périphériques. Nous avons découvert des anomalies de MNI, de cycle cellulaire et de migration neuronale. Également, des défauts d’organelles tels que les mitochondries et l’appareil de Golgi ont été identifiés dans les RG, et sont spécifiques à la mutation faux-sens conduisant à la malformation corticale. Deuxièmement, l'hétérotopie sous-corticale (SH) est une malformation caractérisée par la présence anormale de neurones dans la substance blanche. Le gène codant pour EML1 (Echinoderm microtubule associated protein like 1) a été retrouvé muté chez certains patients SH. Lorsqu’Eml1 est muté chez la souris, une proportion de RG se retrouvent en dehors de la VZ, suggérant qu’elles se détachent coté apical. Au niveau apical, des anomalies de PC et des corps basaux ont été décrits. En étudiant un nouveau modèle de souris mutant, inactivé pour Eml1, mon travail s'est concentré sur les altérations subcellulaires et cellulaires des RG afin de comprendre les mécanismes pathogéniques conduisant à leur détachement et donc à la formation de SH. Etudiant les RG en interphase, en analysant les centrosomes, j’ai déterminé que leur structure est affectée dans les cellules de patients et de souris mutante, et ces défauts sont résolus par la stabilisation des microtubules. Le recrutement de protéines aux centrosomes est altéré et la protéine centrosomale Cep170 s'est avérée être un partenaire d'interaction spécifique d’EML1, cette interaction étant perdue quand EML1 présente une mutation SH. Les centrosomes et le PC étant intimement liés au cycle cellulaire, j’ai poursuivi par l'analyse du cycle cellulaire des RG et identifié des altérations de sa cinétique à deux stades de développement. Le séquençage de l'ARN des cellules uniques a permis d'identifier des dérèglements dans l'expression des gènes du cycle cellulaire. Le détachement anormal des RG est plus massif au début du développement que plus tard, ce qui suggère que les altérations de centrosomes et du cycle cellulaire à ce stade peuvent être en amont du détachement anormal des RG. Mon travail de thèse apporte ainsi de nouveaux éléments essentiels à la compréhension des mécanismes altérés dans les progéniteurs neuronaux dans le contexte de malformations corticales rares
In mammals, cortical development is a finely regulated process that leads to the formation of a functional cortex. Apical radial glial cells (RG) are key progenitor cells du ring cortical development, capable of self-renewal or neuronal generation, with a soma restricted to the ventricular zone (VZ) in rodents. Their nucleus migrates according to the phases of the cell cycle by a process called interkinetic nuclear migration (INM). RG have a bipolar shape, with a long basal process supporting neuronal migration and a short apical process facing the ventricle where a primary cilium (PC), anchored to a modified centrosome (‘basal body’), emerges and detects molecules present in the embryonic cerebrospinal fluid. Genetic mutations can alter the function of RG, affecting cortical development and leading to cortical malformations. These malformations are associated in patients with epilepsy, intellectual disabilities and also neuropsychiatric disorders. It is therefore important to determine how the molecular and cellular processes involving RG can be disrupted by genetic mutations. Thus, my thesis work focused on the study of mutations affecting two different genes in the context of two rare cortical malformations. First, the gene encoding for the motor protein dynein heavy chain (DYNC1H1) was found mutated in patients with a complex cortical malformation associated with microcephaly (small brain) and dysgyria (gyri defects). We generated a Knock-In (KI) mouse model for this gene, reproducing a missense mutation found in a patient. During my thesis, I studied RG at mid-corticogenesis of this KI model and, by comparing it with a mouse model mutant for the same gene but leading to peripheral neuropathies, we showed RG alterations specific to the KI model. We found abnormalities in INM, cell cycle and neuronal migration. Also, defects of key organelles, such as mitochondria and Golgi apparatus were identified in progenitors and are specific in the cortical malformation KI model. Secondly, subcortical heterotopia (SH) is a cortical malformation characterized by the abnormal presence of neurons in the white matter. Mutations in the gene coding for EML1 (Echinoderm microtubule associated protein like 1) were identified in certain SH patients. When Eml1 is mutated in mice, numerous RG are found in basal positions of the cortical wall outside the VZ, suggesting that they detach apically. Within the apical process, abnormal PC formation and basal bodies were described. By studying a new mutant mouse model where Eml1 is inactivated, my work focused on subcellular and cellular alterations of RG to understand the pathogenic mechanisms leading to their detachment and thus to SH formation. In interphase RG, focusing on mechanisms upstream of PC formation, I analyzed centrosomes and determined that their structure is affected in patient and mouse mutant cells, and these defects are rescued by stabilizing microtubules. Recruitment of key centrosomal proteins is altered early in development, and the centrosomal protein Cep170 was found to be a specific interacting partner of EML1, this interaction being lost when EML1 carries a patient mutation. Because centrosomes and cilia are intimately linked to the cell cycle, I proceeded to analyze the RG cell cycle and identified alterations in cell cycle kinetics during early and mid-development. Single-cell RNA sequencing at two key developmental stages identified deregulations in cell cycle gene expression. Abnormal RG detachment appears greater in early compared to mid-development, suggesting that centrosomal and cell cycle alterations at this stage may be upstream of abnormal RG detachment. My thesis work thus brings new elements essential to the understanding of the altered mechanisms in neural progenitors related to rare cortical malformations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bizzotto, Sara. „Eml1 in radial glial progenitors during cortical development : the neurodevelopmental role of a protein mutated in subcortical heterotopia in mouse and human“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066118.

Der volle Inhalt der Quelle
Annotation:
Le développement du cortex cérébral résulte de processus de prolifération, neurogenèse, migration et différenciation cellulaire qui sont contrôlés génétiquement. Les malformations corticales qui résultent d'anomalies de ces processus sont associées à l'épilepsie et la déficience intellectuelle. Nous avons étudié la souris mutante HeCo (heterotopic cortex), qui présente une hétérotopie sous-cortical bilatérale (neurones présents dans la substance blanche) et nous avons identifié la présence d'une mutation sur le gène Eml1 (Echinoderm Microtubule-associated protein-Like 1). De plus, des mutations du gène EML1 ont été identifiées chez des patients atteints d'une forme sévère et rare d'hétérotopie. Dans le cerveau embryonnaire des souris HeCo, des progéniteurs ont été identifiés en dehors de la zone de prolifération, ce qui représente une nouvelle cause de cette malformation. Nous avons étudié la fonction d'Eml1 dans les progéniteurs de la glie radiaire, qui sont clés au cours de la corticogenèse. Nous avons montré qu'Eml1 se localise dans le fuseau mitotique où elle est susceptible de réguler la dynamique des microtubules. Nos données suggèrent qu'Eml1 peut jouer un rôle dans la régulation de la longueur du fuseau puisque celle-ci est perturbée dans les cellules de la glie radiaire chez la souris HeCo. Ceci pourrait représenter la cause primaire de leur ectopie. Nous avons analysé le nombre et la taille des cellules en métaphase dans la partie apicale de la zone ventriculaire où ont lieu les mitoses. Nous proposons ici de nouveaux mécanismes qui régissent l'organisation des progéniteurs dans la zone ventriculaire au cours du développement cortical normal et pathologique
The cerebral cortex develops through genetically regulated processes of cellular proliferation, neurogenesis, migration and differentiation. Cortical malformations represent a spectrum of heterogeneous disorders due to abnormalities in these steps, and associated with epilepsy and intellectual disability. We studied the HeCo (heterotopic cortex) mutant mouse, which exhibits bilateral subcortical band heterotopia (SBH), characterized by many aberrantly positioned neurons in the white matter. We found that Eml1 (Echinoderm Microtubule-associated protein-Like 1) is mutated in these mice. Screening of EML1 in heterotopia patients identified mutations giving rise to a severe and rare form of atypical heterotopia. In HeCo embryonic brains, progenitors were identified outside the normal proliferative ventricular zone (VZ), representing a novel cause of this disorder. We studied Eml1 function in radial glial progenitors (RGCs), which are important during corticogenesis generating other subtypes of progenitors and post-mitotic neurons, and serving as guides for migrating neurons. We showed that Eml1 localizes to the mitotic spindle where it might regulate microtubule dynamics. My data suggest a role in the establishment of the steady state metaphase spindle length. Indeed, HeCo RGCs in the VZ showed a perturbed spindle length during corticogenesis, and this may represent one of the primary mechanisms leading to abnormal progenitor behavior. I also analyzed cell number and metaphase cell size at the apical side of the VZ, where mitosis occurs. I thus propose new mechanisms governing normal and pathological VZ progenitor organization and function during cortical development
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Uzquiano, López Ana. „Progenitor cell mechanisms contributing to cortical malformations : studying the role of the heterotopia gene Eml1/EML1 in radial glia“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS392.pdf.

Der volle Inhalt der Quelle
Annotation:
Le cortex cérébral se développe à partir des zones de prolifération des cellules progénitrices dont le comportement anormal peut donner lieu à des malformations corticales. Des mutations dans Eml1/EML1 ont été identifiées chez la souris HeCo, ainsi que dans trois familles présentant une hétérotopie sous-corticale (SH). La SH se caractérise par une position aberrante des neurones dans la substance blanche. Chez la souris HeCo, des anomalies de position des progéniteurs de la glie radiale apicale (aRG) ont été observées aux stades précoces de la corticogenèse. Je me suis concentré sur la caractérisation de l’aRG dans la zone ventriculaire (VZ) afin d’identifier pourquoi certaines cellules quittent cette région et ainsi mieux comprendre les mécanismes qui sous-tendent l’hétérotopie. En combinant la microscopie confocale et électronique (EM), j'ai découvert des anomalies des centrosomes et des cils primaires dans les aRG mutants pour Eml1 : les cils primaires sont plus courts et souvent mal orientés dans des vésicules. La recherche de partenaires interagissant avec Eml1 à l'aide de la spectrométrie de masse (MS), combinée au séquençage d’exome des ADN de patients SH, nous a permis d'identifier : 1) un partenaire ciliaire interagissant avec Eml1, RPGRIP1L ; 2) des mutations du gène RPGRIP1L chez un patient SH. L’analyse ontologique des gènes sur les données de MS a mis en évidence l’appareil de Golgi et le transport des protéines comme catégories enrichies. En effet, j'ai identifié des altérations de l'appareil de Golgi dans les aRG HeCo. L’ensemble de ces données montre que l'axe appareil de Golgi-cil primaire est perturbé quand Eml1/EML1 est muté et conduit à l’identification de nouvelles voies dans un trouble grave du neurodéveloppement
Cerebral cortical development is a finely regulated process, depending on diverse progenitor cells. Abnormal behavior of the latter can give rise to cortical malformations. Mutations in Eml1/EML1 were identified in the HeCo mouse, as well as in three families presenting severe subcortical heterotopia (SH). SH is characterized by the presence of mislocalized neurons in the white matter. At early stages of corticogenesis, abnormally positioned apical radial glia progenitors (aRG) were found cycling outside the proliferative ventricular zone (VZ) in the HeCo cortical wall. I focused my research on characterizing aRG in the VZ to assess why some cells leave this region and thus to further understand SH mechanisms. Combining confocal and electron microscopy (EM), I uncovered abnormalities of centrosomes and primary cilia in Eml1-mutant aRGs: primary cilia are shorter, and often remain basally oriented within vesicles. Searching for Eml1-interacting partners using mass spectrometry (MS), combined with exome sequencing of SH patient DNAs, allowed us to identify a ciliary Eml1-interacting partner, RPGRIP1L, showing mutations in a SH patient. Gene ontology analyses of MS data pointed to Golgi apparatus and protein transport as enriched categories. Indeed, Golgi abnormalities were identified in HeCo aRGs. Altogether, these data indicate that the Golgi-to-primary cilium axis is perturbed in Eml1mutant conditions, pointing to new intracellular pathways involved in severe neurodevelopmental disorders
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bizzotto, Sara. „Eml1 in radial glial progenitors during cortical development : the neurodevelopmental role of a protein mutated in subcortical heterotopia in mouse and human“. Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066118.

Der volle Inhalt der Quelle
Annotation:
Le développement du cortex cérébral résulte de processus de prolifération, neurogenèse, migration et différenciation cellulaire qui sont contrôlés génétiquement. Les malformations corticales qui résultent d'anomalies de ces processus sont associées à l'épilepsie et la déficience intellectuelle. Nous avons étudié la souris mutante HeCo (heterotopic cortex), qui présente une hétérotopie sous-cortical bilatérale (neurones présents dans la substance blanche) et nous avons identifié la présence d'une mutation sur le gène Eml1 (Echinoderm Microtubule-associated protein-Like 1). De plus, des mutations du gène EML1 ont été identifiées chez des patients atteints d'une forme sévère et rare d'hétérotopie. Dans le cerveau embryonnaire des souris HeCo, des progéniteurs ont été identifiés en dehors de la zone de prolifération, ce qui représente une nouvelle cause de cette malformation. Nous avons étudié la fonction d'Eml1 dans les progéniteurs de la glie radiaire, qui sont clés au cours de la corticogenèse. Nous avons montré qu'Eml1 se localise dans le fuseau mitotique où elle est susceptible de réguler la dynamique des microtubules. Nos données suggèrent qu'Eml1 peut jouer un rôle dans la régulation de la longueur du fuseau puisque celle-ci est perturbée dans les cellules de la glie radiaire chez la souris HeCo. Ceci pourrait représenter la cause primaire de leur ectopie. Nous avons analysé le nombre et la taille des cellules en métaphase dans la partie apicale de la zone ventriculaire où ont lieu les mitoses. Nous proposons ici de nouveaux mécanismes qui régissent l'organisation des progéniteurs dans la zone ventriculaire au cours du développement cortical normal et pathologique
The cerebral cortex develops through genetically regulated processes of cellular proliferation, neurogenesis, migration and differentiation. Cortical malformations represent a spectrum of heterogeneous disorders due to abnormalities in these steps, and associated with epilepsy and intellectual disability. We studied the HeCo (heterotopic cortex) mutant mouse, which exhibits bilateral subcortical band heterotopia (SBH), characterized by many aberrantly positioned neurons in the white matter. We found that Eml1 (Echinoderm Microtubule-associated protein-Like 1) is mutated in these mice. Screening of EML1 in heterotopia patients identified mutations giving rise to a severe and rare form of atypical heterotopia. In HeCo embryonic brains, progenitors were identified outside the normal proliferative ventricular zone (VZ), representing a novel cause of this disorder. We studied Eml1 function in radial glial progenitors (RGCs), which are important during corticogenesis generating other subtypes of progenitors and post-mitotic neurons, and serving as guides for migrating neurons. We showed that Eml1 localizes to the mitotic spindle where it might regulate microtubule dynamics. My data suggest a role in the establishment of the steady state metaphase spindle length. Indeed, HeCo RGCs in the VZ showed a perturbed spindle length during corticogenesis, and this may represent one of the primary mechanisms leading to abnormal progenitor behavior. I also analyzed cell number and metaphase cell size at the apical side of the VZ, where mitosis occurs. I thus propose new mechanisms governing normal and pathological VZ progenitor organization and function during cortical development
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie