Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hemodynamické parametry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hemodynamické parametry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hemodynamické parametry"
Rzheutskaya, Ryta E. „Characteristics of Hemodynamic Disorders in Patients with Severe Traumatic Brain Injury“. Critical Care Research and Practice 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/606179.
Der volle Inhalt der QuelleFranceschi, Claude. „Definition of the venous hemodynamics parameters and concepts“. Veins and Lymphatics 2, Nr. 4 (15.04.2013): 1. http://dx.doi.org/10.4081/hemodynamics.2013.1.
Der volle Inhalt der QuelleOgilvie, Leslie M., Brittany A. Edgett, Jason S. Huber, Mathew J. Platt, Hermann J. Eberl, Sohrab Lutchmedial, Keith R. Brunt und Jeremy A. Simpson. „Hemodynamic assessment of diastolic function for experimental models“. American Journal of Physiology-Heart and Circulatory Physiology 318, Nr. 5 (01.05.2020): H1139—H1158. http://dx.doi.org/10.1152/ajpheart.00705.2019.
Der volle Inhalt der QuelleARYNOV, A. A., N. Z. SHAPATOVA und I. М. SMAGINA. „Diagnostics and treatment of hemodynamic disorders in cancer patients: current trends and own experience“. Oncologia i radiologia Kazakhstana 55, Nr. 1 (31.03.2020): 28–29. http://dx.doi.org/10.52532/2663-4864-2020-1-55-28-29.
Der volle Inhalt der QuelleUedono, Hideki, Akihiro Tsuda, Eiji Ishimura, Shinya Nakatani, Masafumi Kurajoh, Katsuhito Mori, Junji Uchida, Masanori Emoto, Tatsuya Nakatani und Masaaki Inaba. „U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters in healthy subjects“. American Journal of Physiology-Renal Physiology 312, Nr. 6 (01.06.2017): F992—F997. http://dx.doi.org/10.1152/ajprenal.00645.2016.
Der volle Inhalt der QuelleArynov, A. A., N. Z. Shapatova und I. M. Smagina. „Diagnostics and treatment of hemodynamic disorders in cancer patients: current trends and own experience“. Oncologia i radiologia Kazakhstana 55, Nr. 1 (31.03.2020): 32–34. http://dx.doi.org/10.52532/2521-6414-2020-1-55-32-34.
Der volle Inhalt der QuelleBlissitt, Patricia A. „Hemodynamic Monitoring in the Care of the Critically Ill Neuroscience Patient“. AACN Advanced Critical Care 17, Nr. 3 (01.07.2006): 327–40. http://dx.doi.org/10.4037/15597768-2006-3010.
Der volle Inhalt der QuelleKhokonova, Tamara Muratovna, Sofiat Khasenovna Sizhazheva, Zhaneta Huseynovna Sabanchieva, Marina Tembulatovna Nalchikova, Jannet Anvarovna Elmurzayeva, Dzhanneta Magometovna Urusbieva, Inara Aslanovna Khakuasheva und Svetlana Sergeevna Solyanik. „Analysis of hemodynamic parameters and quality of life in patients with chronic kidney disease and arterial hypertension“. Revista de la Universidad del Zulia 12, Nr. 33 (08.05.2021): 274–87. http://dx.doi.org/10.46925//rdluz.33.19.
Der volle Inhalt der QuelleDarowski, M., G. Ferrari, F. Clemente, M. Guaragno und De Lazzari. „Computer Simulation of Hemodynamic Parameter Changes by Mechanical Ventilation and Biventricular Circulatory Support“. Methods of Information in Medicine 39, Nr. 04/05 (2000): 332–38. http://dx.doi.org/10.1055/s-0038-1634451.
Der volle Inhalt der QuelleTang, Hong, Ziyin Dai, Miao Wang, Binbin Guo, Shunyu Wang, Jiabin Wen und Ting Li. „Lumped-Parameter Circuit Platform for Simulating Typical Cases of Pulmonary Hypertensions from Point of Hemodynamics“. Journal of Cardiovascular Translational Research 13, Nr. 5 (13.01.2020): 826–52. http://dx.doi.org/10.1007/s12265-020-09953-y.
Der volle Inhalt der QuelleDissertationen zum Thema "Hemodynamické parametry"
Hemzalová, Zuzana. „Evoluční algoritmy pro ultrazvukovou perfúzní analýzu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442504.
Der volle Inhalt der QuelleUrquhart, Gayle. „Timing of hemodynamic pressure measurements and thermodilutional cardiac outputs on derived hemodynamic parameters“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40155.pdf.
Der volle Inhalt der QuelleDowning, Joey Micah. „Flow through a compliant stenotic artery : a parametric evaluation“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17865.
Der volle Inhalt der QuelleHavlíček, Martin. „Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233576.
Der volle Inhalt der QuelleShi, Jun. „Constructing FHNNs to detect CVDs through hemodynamic parameters derived from sphygmogram“. Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493321.
Der volle Inhalt der QuelleFaik, Isam. „3D characterization of the hemodynamic parameters in a stented coronary artery“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82485.
Der volle Inhalt der QuelleHeyman, Patrick. „Hemodynamic parameters of patients with treated hypertension and coronary artery disease“. [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000701.
Der volle Inhalt der QuelleRajabi, Jaghargh Ehsan. „Effects of hemodynamic stresses on the remodeling parameters in arteriovenous fistula“. University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427962400.
Der volle Inhalt der QuelleAzadan, Niaz. „Den diagnostiska säkerheten i arbetsprov på kvinnor med angina pectoris : Slutversion“. Thesis, Hälsohögskolan, Jönköping University, HHJ, Avd. för naturvetenskap och biomedicin, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49238.
Der volle Inhalt der QuelleAngina pectoris is chest pain and myocardial ischemia due to Coronary Artery Disease (CAD) or Non-Coronary Artery Disease (non-CAD). Exercise stress test (EST) is the most common diagnostic procedure for angina pectoris. Non-CAD, low sensitivity for exercise electrocardiography (ex-ECG) and diffuse symptoms lower the diagnostic accuracy for females. This review’s aim was to study whether haemodynamic parameters and risk stratifications with Pre-test probability (PTP) or Duke Treadmill Score (DTS) improves the diagnostic accuracy of EST for females. Inclusion criterions were English peer reviewed, clinical studies with mentioned ethical approval or consent. Snowballing, PUBMED, MEDLINE and CINAHL were used. Articles that were included in the results, were reviewed once again, and compared to one another. Hemodynamic parameters, PTP and DTS increase the diagnostic accuracy of EST in women. This diagnostic accuracy depends on PTP method, risk group, ethnicity, and angina pectoris variant. Further research regarding ethnic specific PTP methods, mechanism behind the blood pressure reaction, DTS for diagnosis of non-CAD and methods for differentiation of subtypes of non-CAD, would be valuable. Without studies about the Systematic Coronary Risk Evaluation (SCORE), Diamond Forrester Score (DFS), and their impact on ex-ECG, the result of this review cannot be generalized to ex-ECG in Sweden.
Audebert, Chloé. „Mathematical liver modeling : hemodynamics and function in hepatectomy“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066077/document.
Der volle Inhalt der QuelleMajor liver resection is being performed to treat liver lesions or for adult-to-adult living donor liver transplantation. Complications of these surgeries are related to a poor liver function. The links between liver hemodynamics, liver volume and liver function remain unclear and are important to better understand these complications. The surgery increases the resistance to blood flow in the organ, therefore it modifies liver hemodynamics. Large modifications of the portal vein hemodynamics have been associated with poor liver regeneration. Moreover the liver receives 25% of the cardiac outflow, therefore liver surgery may impact the whole blood circulation. In this context, the first goal is to investigate with mathematical models the impact of liver surgery on liver hemodynamics. The second goal is to study the liver perfusion and function with mathematical models. The first part describes the experimental conditions and reports the measurements recorded. Then, the second part focuses on the liver hemodynamics during partial hepatectomy. On one hand, the hemodynamics during several surgeries is quantitatively reproduced and explained by a closed-loop model based on ODE. On the other hand, the change of waveforms observed after different levels of liver resection is reproduced with a model of the global circulation, including 0D and 1D equations. This may contribute to a better understanding of the change of liver architecture induced by hepatectomy. Next, the transport in blood of a compound is studied. And a pharmacokinetics model and its parameter identification are developed to quantitatively analyze indocyanine green fluorescence dynamics in the liver tissue
Bücher zum Thema "Hemodynamické parametry"
Seth, Runjan. Inotropic and lusitropic response to gbs-adrenergic stimulation, hemodynamics, and metabolic parameters in early experimental heart failure. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Den vollen Inhalt der Quelle findenTorrance, Shona Margaret. The effect of varying levels of acute hypoxia on neonatal acid-base homeostasis, hemodynamic parameters, myocardial metabolism and tolerance to global ischemia. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Den vollen Inhalt der Quelle findenGoldberg, Harry, Sing San Yang, Lamberto G. Bentivoglio und Vladir Maranhao. From Cardiac Catheterization to Hymodynamic Parameters. 3. Aufl. Oxford University Press, USA, 1988.
Den vollen Inhalt der Quelle findenSan, Yang Sing, Hrsg. From cardiac catheterization data to hemodynamic parameters. 3. Aufl. Philadelphia: Davis, 1988.
Den vollen Inhalt der Quelle findenLadner, Travis R., Nishant Ganesh Kumar, Lucy He und J. Mocco. Neuroprotection for Vascular and Endovascular Neurosurgery. Herausgegeben von David L. Reich, Stephan Mayer und Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0019.
Der volle Inhalt der QuelleDvorak, Roman. The effect of a calcium channel blocker on exercise induced muscle damage and hemodynamic parameters in young, healthy adults. 1996.
Den vollen Inhalt der Quelle findenChappell, Michael, Bradley MacIntosh und Thomas Okell. Kinetic Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.003.0004.
Der volle Inhalt der QuelleMaquet, Pierre, und Julien Fanielle. Neuroimaging in normal sleep and sleep disorders. Herausgegeben von Sudhansu Chokroverty, Luigi Ferini-Strambi und Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0011.
Der volle Inhalt der QuelleYarlagadda, Vamsi V., und Ravi R. Thiagarajan. Cardiac Disease in Pediatric Intensive Care. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199918027.003.0007.
Der volle Inhalt der QuelleChappell, Michael, Bradley MacIntosh und Thomas Okell. Introduction to Perfusion Quantification using Arterial Spin Labelling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Hemodynamické parametry"
Gabriel, Edmo Atique, und Tomas Salerno. „Determining Hemodynamic Parameters“. In Principles of Pulmonary Protection in Heart Surgery, 271–77. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-308-4_29.
Der volle Inhalt der QuellePayen, D. „Physiological Determinants of Hemodynamic Parameters“. In Update in Intensive Care and Emergency Medicine, 28–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84167-5_3.
Der volle Inhalt der QuelleKuzkov, Vsevolod V. „Volumetric Parameters: A Physiological Background“. In Advanced Hemodynamic Monitoring: Basics and New Horizons, 109–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71752-0_12.
Der volle Inhalt der QuelleIshida, Fujimaro, Masanori Tsuji, Satoru Tanioka, Katsuhiro Tanaka, Shinichi Yoshimura und Hidenori Suzuki. „Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings“. In Acta Neurochirurgica Supplement, 27–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63453-7_4.
Der volle Inhalt der QuelleMaurits, Natasha. „Cerebrovascular Disease, Ultrasound, and Hemodynamical Flow Parameters“. In From Neurology to Methodology and Back, 231–55. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1132-1_10.
Der volle Inhalt der QuelleMihalef, Viorel, Lucian Itu, Tommaso Mansi und Puneet Sharma. „Lumped Parameter Whole Body Circulation Modelling“. In Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, 111–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56853-9_5.
Der volle Inhalt der QuelleHavlik, J., J. Dvorak und V. Fabian. „Design and Realization of Hardware for Measurement of Hemodynamic Parameters“. In IFMBE Proceedings, 1420–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_373.
Der volle Inhalt der QuelleGrabovskis, A., E. Kviesis-Kipge, Z. Marcinkevics, V. Lusa, K. Volceka und M. Greve. „Reliability of Hemodynamic Parameters Measured by a Novel Photoplethysmography Device“. In IFMBE Proceedings, 199–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21683-1_50.
Der volle Inhalt der QuelleItu, Lucian, Puneet Sharma, Tiziano Passerini, Ali Kamen und Constantin Suciu. „A Parameter Estimation Framework for Patient-Specific Assessment of Aortic Coarctation“. In Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, 89–109. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56853-9_4.
Der volle Inhalt der QuelleWolański, Wojciech, Bożena Gzik-Zroska, Kamil Joszko, Edyta Kawlewska, Marta Sobkowiak, Marek Gzik und Wojciech Kaspera. „Impact of Vessel Mechanical Properties on Hemodynamic Parameters of Blood Flow“. In Innovations in Biomedical Engineering, 271–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70063-2_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hemodynamické parametry"
Xiang, Jianping, Sabareesh K. Natarajan, Markus Tremmel, Ding Ma, J. Mocco, Adnan Siddiqui, Elad I. Levy und Hui Meng. „Hemodynamic Metrics Correlate With Intracranial Aneurysm Rupture Status Better Than Morphologic Metrics“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19664.
Der volle Inhalt der QuelleAlmeida, Vania G., Luis F. Requicha Ferreira und Carlos Correia. „Hemodynamic parameters assessment“. In 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2012. http://dx.doi.org/10.1109/enbeng.2012.6331379.
Der volle Inhalt der QuellePrince, Chekema, Mingyao Gu und Sean D. Peterson. „Flow in the Vascular System Post Stent Implantation: Examining the Near-Stent Flow Physics“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80045.
Der volle Inhalt der QuelleHavlík, Jan, Vratislav Fabián, David Macků, Lenka Lhotská, Jan Dvořák und Lucie Kučerová. „Measurement of hemodynamic parameters“. In the 4th International Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2093698.2093740.
Der volle Inhalt der QuelleXiang, Jianping, Nicole Varble, Adnan Siddiqui, Luca Antiga und Hui Meng. „AView: A Clinical Tool for Hemodynamic and Morphological Analysis of Intracranial Aneurysms“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14770.
Der volle Inhalt der QuelleGundert, Timothy J., Paul Hayden, Raymond Q. Migrino und John F. LaDisa. „Visualization of CFD Results in a Virtual Reality Environment“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205067.
Der volle Inhalt der QuelleVaz, Pedro G., Anne Humeau-Heurtier, Edite Figueiras und João Cardoso. „Laser based sensors for hemodynamic parameters measurement“. In Optical Sensors. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/sensors.2017.sem3e.3.
Der volle Inhalt der QuelleKhiabani, Reza H., Sulisay Phonekeo, Harish Srinimukesh, Elaine Tang, Mark Fogel und Ajit P. Yoganathan. „Effect of Flow Pulsatility and Wall Compliance on the Energy Loss in the Total Cavopulmonary Connection“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14811.
Der volle Inhalt der QuelleBernad, Sandor I., und Elena S. Bernad. „Coronary Venous Bypass Graft Failure, Hemodynamic Parameters Investigation“. In Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.764-161.
Der volle Inhalt der QuelleGriofa, Marc O., Rebecca Blue, Robert Friedman, Kenneth Cohen, Philip Hamski, Andrew Pal, Robert Rinehart und Tom Merrick. „Radio Frequency Impedance Interrogation monitoring of hemodynamic parameters“. In 2011 Biomedical Sciences and Engineering Conference (BSEC). IEEE, 2011. http://dx.doi.org/10.1109/bsec.2011.5872326.
Der volle Inhalt der Quelle