Dissertationen zum Thema „Hematopoiesis Regulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Hematopoiesis Regulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Huang, Hsuan-Ting. „Epigenetic Regulation of Hematopoiesis in Zebrafish“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10175.
Der volle Inhalt der QuelleUllrich, Sebastian 1984. „Alternative mechanisms of gene regulation during hematopoiesis“. Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/665801.
Der volle Inhalt der QuelleLa regulació gènica determina el desenvolupament dels diferents tipus cel·lulars, teixits i òrgans. Tot i que el mode bàsic de regulació és dirigit per factors de transcripció, existeixen una gran varietat de mecanismes que contribueixen a determinar la quantitat de RNA produïda pels gens. En aquest treball, investiguem en primer lloc la retenció d’introns com un tipus d’splicing alternatiu que altera el transcriptome cel·lular. Com a model biològic, ens centrem en la hematopoesi. Comparem la retenció d’introns en diferents estadis del desenvolupament de limfòcits B en humà i ratolí amb la retenció durant la diferenciació del granulòcits. Estudiem també el patró d’expressió i d’unió (binding) dels factors de regulació de l’splicing. En segon lloc, investiguem el paper dels RNA llargs no codificants (long non coding RNAs, lncRNAs) en la transdiferenciació de limfòcits B a macròfags. En particular, el paper d’aquells lncRNAs que son regulats positivament durant aquest procés. Reduïm la seva expressió durant la transdiferenciació mitjançant la tècnica CRISPR/Cas9 amb l’objectiu d’identificar gens amb el potencial de retardar o de bloquejar el procés i que, en conseqüència, pugui jugar un paper crucial en el canvi de la identitat cel·lular.
Durand, Ellen Marie. „Regulation of hematopoietic stem cell migration and function“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11550.
Der volle Inhalt der QuelleMartin, Richard. „Regulation of SCL expression and function in hematopoiesis“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85582.
Der volle Inhalt der QuelleTaken together, this work has elucidated molecular mechanisms which underlie cell fate decisions. It describes how the activity of a master regulator of erythroid differentiation, SCL, is regulated both by signals from the environment and at the transcriptional level, through combinatorial interactions between lineage-specific transcription factors.
Smith, Molly. „Alternative Splicing and Regulation of Innate Immune Mediators in Normal and Malignant Hematopoiesis“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563527303459942.
Der volle Inhalt der QuelleGronthos, Stan. „Stromal precursor cells : purification and the development of bone tissue“. Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phg8757.pdf.
Der volle Inhalt der QuelleGaboury, Louis A. „Studies of the role of mesenchymal cells in the regulation of hemopoiesis“. Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28784.
Der volle Inhalt der QuelleMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Serbanovic-Canic, Jovana. „Using zebrafish to identify new regulators of haematopoiesis“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607950.
Der volle Inhalt der QuelleRothberg, Janet L. „Polycomb-like 2 (Mtf2/Pcl2) is Required for Epigenetic Regulation of Hematopoiesis“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35323.
Der volle Inhalt der QuelleJarratt, Andrew. „Locus-wide studies into the transcriptional regulation of Runx1 in developmental hematopoiesis“. Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572521.
Der volle Inhalt der QuelleJunkunlo, Kingkamon. „Regulation of hematopoiesis in the freshwater crayfish, Pacifastacus leniusculus : role of transglutaminase“. Doctoral thesis, Uppsala universitet, Jämförande fysiologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327921.
Der volle Inhalt der QuelleChiou, Chuang-Jiun. „Expression of Granulocyte-Macrophage Colony-Stimulating Factor Gene in Insect Cells by a Baculovirus Vector“. Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc798471/.
Der volle Inhalt der QuelleRobinson, Simon N. „Proliferation regulation of haematopoietic stem cells in normal and leukaemic haematopoiesis“. Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/14965.
Der volle Inhalt der QuelleWang, Dennis Yi Qing. „Statistical modelling of gene regulation : applications to haematopoiesis“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607969.
Der volle Inhalt der QuelleMaganti, Harinad. „Polycomb-like 2 (Mtf2/Pcl2) Mediated Epigenetic Regulation of Hematopoiesis and Refractory Leukemia“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37251.
Der volle Inhalt der QuelleHaylock, David Norman. „Ex vivo expansion of human haemopoietic progenitor cells“. Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phh4181.pdf.
Der volle Inhalt der QuelleDong, Wei-Feng. „Expression and regulation of rhombotin-2 (RBTN/LMO-2) in normal hematopoiesis and leukemogenesis“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0017/NQ53807.pdf.
Der volle Inhalt der QuelleZannettino, Andrew Christopher William. „Molecular definition of stromal cell-stem cell interactions /“. Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phz32.pdf.
Der volle Inhalt der QuelleMa, Chun-hang. „Gene regulation of zebrafish hematopoiesis during embryonic development with special references to survivins and jak2a“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B41897249.
Der volle Inhalt der QuelleYates, Jeffrey Lynn. „THE GENETIC REGULATION OF THE RESPONSE OF HEMATOPOIETIC STEM/PROGENITOR CELLS TO THE CYTOSTATIC AGENT HYDROXYUREA“. UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/420.
Der volle Inhalt der QuelleMa, Chun-hang, und 馬進恆. „Gene regulation of zebrafish hematopoiesis during embryonic development with special references to survivins and jak2a“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41897249.
Der volle Inhalt der QuelleVarga, Andrea Erica. „Molecular characterisation, regulation and evolutionary analysis of uroplakin 1B : a tetraspanin family member /“. Title page, errata, table of contents and summary only, 2003. http://hdl.handle.net/2440/37940.
Der volle Inhalt der QuelleThesis (Ph.D.)--Dept of Surgery, 2003.
Gilmore, William Samuel. „A study of molecules involved in the regulation of the growth of haematopoietic cells and heart muscle cells in culture“. Thesis, University of St Andrews, 1986. http://hdl.handle.net/10023/14970.
Der volle Inhalt der QuelleDeng, Ruixia, und 邓瑞霞. „Astragaloside IV promotes haematopoiesis and enhances cytokines release by mesenchymal stromal cells mediated immune regulation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hdl.handle.net/10722/198839.
Der volle Inhalt der Quellepublished_or_final_version
Chinese Medicine
Doctoral
Doctor of Philosophy
An, Ningfei, Bo Cen, Houjian Cai, Jin H. Song, Andrew Kraft und Yubin Kang. „Pim1 kinase regulates c-Kit gene translation“. BIOMED CENTRAL LTD, 2016. http://hdl.handle.net/10150/622957.
Der volle Inhalt der QuelleChen, Aichun. „Regulation of lozenge transcription factor activity and blood cell development by MLF and its partner DnaJ-1“. Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30064/document.
Der volle Inhalt der QuelleHematopoiesis is the process of formation of fully differentiated blood cells from hematopoietic stem cells (HSCs). This process is tightly controlled by the integration of developmental and homeostatic signals to ensure the generation of an appropriate number of each blood cell type. At the molecular level, the regulation of this developmental process is mediated by a number of transcription factors, especially by members of the RUNX family, and mutations affecting these factors are at the origin of numerous hemopathies, including leukemia. Intriguingly, many transcriptional regulators and signaling pathways controlling blood cell development are evolutionarily conserved from humans to Drosophila melanogaster. Hence, the fruit fly has become a potent and simplified model to study the mechanisms underlying the specification of blood cell lineages and the regulation of blood cell homeostasis. Members of the Myeloid Leukemia Factor (MLF) family have been implicated in hematopoiesis and in oncogenic blood cell transformation, but their function and molecular mechanism of action remain elusive. Previous work in Drosophila showed that MLF stabilizes the RUNX transcription factor Lozenge (LZ) and controls the number of LZ+ blood cells. During my PhD, I sought to further decipher the molecular mechanism of action of MLF on Lozenge during blood cell development. Using a proteomic approach in Drosophila Kc167 cells, we identified the Hsp40 co-chaperone family member DnaJ-1 and its chaperone partner Hsc70-4 as two partners of MLF. These interactions were confirmed by co-immunoprecipitations and in vitro pull-down assays. Importantly, we found that knocking down DnaJ-1 or Hsc70-4 expression in Kc167 cells caused a reduction in the level of Lozenge protein and a concomitant decrease in Lozenge transactivation activity, which were very similar to those caused by MLF knock-down. Similarly, over-expression of two DnaJ-1 mutants that are unable to stimulate the chaperone activity of Hsc70-4 also decreased Lozenge level and impaired its capacity to activate transcription. These results suggest that MLF could act within a chaperone complex composed of DnaJ-1 and Hsc70-4 to control Lozenge stability and activity. Along that line, we showed by co-immunoprecipitation that Lozenge interacts with MLF, DnaJ-1 and Hsc70-4, respectively. Using various truncated mutants of MLF or DnaJ-1, we showed that MLF and DnaJ-1 interact and together with Lozenge through their conserved MLF homology domain (MHD) and C-terminal region, respectively. Furthermore, in vitro GST pull-down assays suggested that the interactions between MLF, DnaJ-1 and Lozenge are direct. Thus, we propose that MLF and DnaJ-1 control Lozenge protein level by interacting with it and by promoting its folding and/or solubility via the Hsc70 chaperone machinery. In parallel, we assessed DnaJ-1 function in Drosophila blood cells in vivo using a null allele of dnaj-1 generated by CRISPR/Cas9 technique. We found that, like mlf, dnaj-1 mutation leads to an increase in the number and size of LZ+ blood cells, as well as to an over-activation of the Notch signaling pathway in these cells. Moreover, our data suggested that high levels of active Lozenge are required to control the number and size of LZ+ blood cells, and to down-regulate Notch expression. We propose that the MLF/DnaJ-1 complex controls LZ+ blood cell development in vivo by regulating Lozenge protein level/activity and thereby Notch pathway activation. In sum, our results establish a functional link between MLF, the Hsp40 co-chaperone DnaJ-1 and the RUNX transcription factor Lozenge, which could be conserved in other species
Sha, Xiaojin. „Translation initiation factor 4E binding protein 1,2 (4E-BP1,2) in hematopoiesis and stress erythropoiesis“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15797.
Der volle Inhalt der QuelleTranslational regulation allows an organism to generate fast responses to environmental changes quickly. Eukaryotic initiation factor 4E binding protein (4E-BP) is an inhibitor of translation initiation. Unphosphorylated 4E-BP binds to eukaryotic initiation factor 4E (eIF4E) blocking recruitment of the initiation complex eIF4F to the cap structure at the 5´ terminus of eukaryotic cellular mRNAs. Thus initiation of translation is blocked. Phosphorylation of 4E-BP by the mTOR kinase causes disassociation of the 4E-BP/eIF4E complex and increases the availability of eIF4E. EIF4E activity is not only regulated by 4E-BP, but also phosphorylation which is regulated by MAP kinase - interacting protein kinase (MNK). Three isoforms of 4E-BP are known, termed 4E-BP1, 4E-BP2 and 4E-BP3. 4E-BP1 and 4E-BP2 are involved in oxidative and adipogenetic stresses in vivo. They are equally expressed in hematopoietic system, whereas 4E-BP3 is not detected. 4E-BP1 is phosphorylated during erythroblast proliferation. Erythroid differentiation is blocked by overexpresssion of eIF4E in tissue culture. These studies implied that 4E-BPs might play role in response to erythropoietic stress. I examined hematopoiesis and phenylhydrazine (PHZ) induced stress erythropoiesis in 4E-BP1 and 4E-BP2 individual knock out mice and 4E-BP1,2 compound knock out mice. I found that the hematopoiesis of 4E-BPs deficient mice were unaffected. However, 4E-BP1,2-/- and 4E-BP2-/- mice showed delayed response to phenylhydrazine (PHZ) induced erythropoietic stress. Simultaneously, the mRNA translation of GATA-1, which is the essential erythroid transcription factor, was downregulated in their erythroblasts. The signaling pathways through the mTOR and MNK1 were activated in erythropoietic stress. These data showed that 4E-BP2 but not 4E-BP1 was required for the response to erythropoietic stress and suggested that 4E-BP related translation regulatory machinery played a role in stress erythropoiesis.
Hultquist, Anne. „Regulation and function of the Mad/Max/Myc network during neuronal and hematopoietic differentiation“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5070-9/.
Der volle Inhalt der QuelleHu, Nan. „Erk1/2 Signaling Pathway and Transcriptional Repressor Gfi1 in the Regulation of Neutrophil versus Monocyte Development in Response to G-CSF and M-CSF“. University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1440089200.
Der volle Inhalt der QuelleRenström, Jonas Verfasser], Jochen [Akademischer Betreuer] Graw, Robert A. J. [Akademischer Betreuer] Oostendorp und Angelika [Akademischer Betreuer] [Schnieke. „The regulation of hematopoiesis by stromal cells / Lars Jonas Mikael Renström. Gutachter: Jochen Graw ; Robert A. J. Oostendorp ; Angelika Schnieke. Betreuer: Robert A. J. Oostendorp“. München : Universitätsbibliothek der TU München, 2010. http://d-nb.info/1013436938/34.
Der volle Inhalt der QuelleLung, Tina Kathy. „Analysis of Mouse EKLF/KLF2 E9.5 Double Knockout: Yolk Sac Morphology and Embryonic Erythroid Maturation“. VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1821.
Der volle Inhalt der QuelleApostolov, Apostol. „Studying the posttranslational modifications of transcription factor Ikaros and their role in its function“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00923158.
Der volle Inhalt der QuelleTorres, Núñez Eva. „Sparc (Osteonectin): new insight into the function and regulation = Sparc (Osteonectin): nuevos conocimientos sobre sus funciones y regulación“. Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/133023.
Der volle Inhalt der QuelleOsteonectina, también llamada Sparc o BM-40, es una glicoproteína multifuncional que pertenece a la familia de las proteínas matricelulares de la matriz extracelular. Este grupo modula las interacciones entre la matriz y las células e interviene en múltiples funciones más que jugar un papel en la estructura celular. Se sabe que Sparc tiene una alta afinidad por los iones calcio y fue descubierta por primera vez como el componente mayoritario de la matriz extracelular de tejidos mineralizados. Más tarde, se localizó Sparc en muchos otros tejidos. La expresión de Sparc es alta durante el desarrollo temprano y disminuye durante la edad adulta. Sin embargo, su expresión aumenta en tejidos que requieren cierto grado de renovación, reparación o en tumorigénesis. Debido a que Sparc es capaz de interactuar con múltiples moléculas, se le han atribuido importantes funciones como antiadhesión, regulación del ciclo celular y actividad angiogénica. Debido al poco conocimiento respecto a la regulación de Sparc y los papeles contradictorios en diferentes tejidos, el objetivo principal de esta tesis es contribuir a un mayor entendimiento de este gen en peces teleósteos. En esta tesis demostramos: 1. Sparc es un regulador importante en hematopoyesis embriogénica durante el desarrollo temprano del pez cebra. 2. Localizamos sparc corriente abajo de fgf21 en esta cascada de regulación. 3. La radiación ultravioleta es capaz de inducir un incremento en la expresión de p53 y Sparc. 4. Dado que sparc está altamente expresada en embriones expuestos a radiación ultravioleta, este gen puede estar implicado en el incremento de malformaciones durante el desarrollo. Así, se sugiere que posiblemente sparc sea capa de inducir un mecanismo molecular en respuesta a la exposición de UV. 5. El intrón localizado entre las dos regiones 5’UTR es clave para regulación transcripcional de sparc ya que el vector conteniendo únicamente esta secuencia asociada a GFP es capaz de expresar fluorescencia en notocorda, ICM, vesícula ótica, bulbo olfatorio y fibras musculares, lugares donde se sabe que sparc está presente tanto en pez cebra como en otras especies de teleósteos. 6. Sparc está regulada a nivel de la transcripción por metilación del ADN. Concretamente, la isla CpG detectada en el intrón es susceptible a procesos de metilación. 7. Tanto la secuencia aminoacídica de Sparc como los lugares de expresión en larvas de rodaballo (Scophthalmus maximus) están altamente conservados cuando se comparan con las secuencias existentes en otras especies. 8. Sparc tiene un papel durante la metamorfosis de rodaballo por su alta expresión en etapas premetamórficas.
Perrod, Chiara. „Epigenetic PU.1 silencing in myeloid leukemia by mimicrying a T cell specific chromatin loop“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16863.
Der volle Inhalt der QuelleAlterations in the local chromatin structure orchestrate the dynamic regulation of differentiation promoting genes. PU.1 is a master transcription factor in hematopoiesis. PU.1 gene must be tightly regulated to achieve lineage specific expression pattern. High levels of PU.1 are required for myeloid commitment: it is expressed at intermediate level in B-cells and must be actively silenced to permit T cell development from early multipotent progenitors. However, little is known of how PU.1 is regulated in T-cells. Moreover, aberrant PU.1 expressions have been observed in multiple leukemias. Using a genome-wide chromatin interaction screen we identified a cis-repressor with insulating capacity that undergoes long-distant chromatin looping to block PU.1 promoter activity in T cells but not myeloid or B cells. Looping and repression requires binding of the chromatin regulator protein CTCF. In contrast to normal myeloid cells, we found that cancer cells from myeloid leukemia patients adopt the T cell specific repressive chromatin structure bringing the insulator into spatial contact with the PU.1 promoter. These results identify CTCF controlled long-distant insulator looping as a novel mechanism to silence lineage-opposing transcription factor expression, and reveal that cancer cells can mimic the chromatin confirmation of another lineage to block expression of differentiation driving genes.
Corbel, Stéphane. „Mise en évidence d'un transport bi-directionnel d'histamine dans les progéniteurs hématopoïétiques murins“. Paris 5, 1997. http://www.theses.fr/1997PA055001.
Der volle Inhalt der QuelleOakley, Erin J. „GENETIC REGULATION OF HEMATOPOIETIC STEM CELL AGING“. UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/659.
Der volle Inhalt der QuelleNottingham, Wade. „Transcriptional regulation of Runx1 in the developing haematopoietic system“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670091.
Der volle Inhalt der QuelleHastreiter, Araceli Aparecida. „Avaliação de aspectos regulatórios da hematopoese em desnutrição proteico-energética experimental: papel das células endoteliais derivadas das células tronco mesenquimais medulares“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/9/9136/tde-22102014-155543/.
Der volle Inhalt der QuelleProtein-energy malnutrition (PEM) causes anemia and leukopenia as it reduces hematopoietic precursors, impairs the production of mediators that induce hematopoiesis and alters structural and ultrastructural changes in bone marrow (BM) extracellular matrix. Hematopoiesis occurs in distinct BM niches - endosteal and perivascular - which modulate the processes of differentiation, proliferation and self-renewal of hematopoietic stem cell (HSC). Mesenchymal stem cells (MSC) play an important role in the formation of these niches through their differentiation in several cell types that compose them. Additionally, MSC can modulate the function of other cells, such as HSC and endothelial cells (EC), through the release of several growth factors and cytokines. The EC express proteins that regulate the differentiation and migration of HSC in the BM. MSC seem to be the precursor of medullary EC because in vitro MSC can differentiate into EC-like cells. Thus, MSC are a key point in the study of changes caused by DPE on the perivascular niche and on the regulation of hematopoiesis. In this study, we investigated whether PEM would affect BM-MSC in vitro differentiation into EC-like cells and evaluated whether these cells would have distinct capacities of producing some regulatory mediators of hematopoiesis (CXCL- 12, SCF, Ang-1, IL-11, GM -CSF and TFG-β), as well as analyzed possible changes in the gene expression profile of MSC function and EC-like cells related markers. C57BL/6 mice were divided into Control and Malnourished groups, which received for 5 weeks, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). After this period, animals were euthanized, nutritional and hematological evaluations were performed, featuring the PEM. MSC were isolated, characterized and differentiated in vitro into EC-like cells, which were evidenced by increased gene expression of NT5E, FLT1, KDR, PECAM1 and VCAM1. The expression of CDH5, CSPG4, LEPR, NES, CSF1, CSF2, CSF3, MCAM, PROM1, ANGPT1, CXCL12, ENG, IGF1, IL3, IL11, KITL, TGFB1, Wnt3a, WNT5A, ICAM1, PDGFB1 and VWF genes was also evaluated. Changes caused by PEM on gene expression and quantification of CXCL-12, SCF and Ang-1 were found, indicating that tested cells from the Malnourished group were in a \"pro-proliferative\" state in an effort to restore hematopoiesis. However, our results are in accordance to the literature regarding bone marrow hypoplasia as a consequence of PEM. Therefore, we infer hematopoietic changes observed in this work are not related to changes in the synthesis of SCF, 12 CXCL-12 or Ang-1.
McKim, Daniel Boyce. „Neuroimmune and Hematopoietic Regulation of Stress-Induced Anxiety“. The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492079844476452.
Der volle Inhalt der QuelleTshuikina, Wiklander Marina. „Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9206.
Der volle Inhalt der QuelleKriz, Vitezslav. „The Role of the SHB Adapter Protein in Cell Differentiation and Development“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6850.
Der volle Inhalt der QuelleGhadie, Mohamed A. „Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.
Der volle Inhalt der QuelleXu, Dawei. „Telomerase activity and its regulation in malignant hematopoietic cells /“. Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3815-6/.
Der volle Inhalt der QuelleLIANG, YING. „GENETIC REGULATION OF HEMATOPOIETIC STEM CELL NUMBERS IN MICE“. UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_diss/418.
Der volle Inhalt der QuelleCopley, Michael Rebin. „Regulation of developmental changes in hematopoietic stem cell self-renewal“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44819.
Der volle Inhalt der QuelleVan, der Wath Richard Carl. „Computational modelling of hematopoietic stem cell division and regulation dynamics“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608642.
Der volle Inhalt der QuelleSharma, Devyani. „Regulation Of Hematopoietic Stem Cells By Lipid and Mitochondrial Metabolism“. University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563295190003946.
Der volle Inhalt der QuelleFoltz, Ian Nevin. „Regulation of the stress-activated protein kinase pathways in hematopoietic cells“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ38887.pdf.
Der volle Inhalt der QuelleLee-Sayer, Sally. „Hyaluronan binding and CD44 in regulating hematopoiesis and CD8 T cell response“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61999.
Der volle Inhalt der QuelleScience, Faculty of
Microbiology and Immunology, Department of
Graduate
Liu, Yi. „LATEXIN’S ROLE IN REGULATING HEMATOPOIETIC STEM AND PROGENITOR CELLS“. UKnowledge, 2013. http://uknowledge.uky.edu/physiology_etds/11.
Der volle Inhalt der Quelle