Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Helium Superfluid.

Zeitschriftenartikel zum Thema „Helium Superfluid“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Helium Superfluid" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

BRUSOV, PETER, und PAVEL BRUSOV. „NOVEL SOUND PHENOMENA IN IMPURE SUPERFLUIDS“. International Journal of Modern Physics B 20, Nr. 03 (30.01.2006): 355–80. http://dx.doi.org/10.1142/s021797920603322x.

Der volle Inhalt der Quelle
Annotation:
In the last decade, new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities, superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and show that this coupling increases significantly. This leads to the existence in impure superfluids of such unusual sound phenomena as slow "pressure" waves and fast "temperature" waves. This also decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by high intensity waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which has never been observed in superfluids) could be observed in impure superfluids. Even the nature of the sound modes in impure superfluids turns out to be changed. We have also derived for the first time the nonlinear hydrodynamic equations for superfluid helium in aerogel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

HIRSCH, J. E. „KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY AND SUPERFLUIDITY“. Modern Physics Letters B 25, Nr. 29 (20.11.2011): 2219–37. http://dx.doi.org/10.1142/s0217984911027613.

Der volle Inhalt der Quelle
Annotation:
The theory of hole superconductivity proposes that superconductivity is driven by lowering of quantum kinetic energy and is associated with expansion of electronic orbits and expulsion of negative charge from the interior to the surface of superconductors and beyond. This physics provides a dynamical explanation of the Meissner effect. Here we propose that similar physics takes place in superfluid helium 4. Experimental manifestations of this physics in 4 He are the negative thermal expansion of 4 He below the λ point and the "Onnes effect", the fact that superfluid helium will creep up the walls of the container and escape to the exterior. The Onnes effect and the Meissner effect are proposed to originate in macroscopic zero point rotational motion of the superfluids. It is proposed that this physics indicates a fundamental inadequacy of conventional quantum mechanics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

OWCZAREK, ROBERT. „KNOTTED VORTICES AND SUPERFLUID PHASE TRANSITION“. Modern Physics Letters B 07, Nr. 23 (10.10.1993): 1523–26. http://dx.doi.org/10.1142/s0217984993001557.

Der volle Inhalt der Quelle
Annotation:
In this letter, studies of knotted vortex structures in superfluid helium are continued. A model of superfluid phase transition (λ-transition) is built in this framework. Similarities of this model to the two-dimensional Ising model are shown. Dependence of specific heat of superfluid helium on temperature near the λ point is explained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

SATO, Akio. „Superfluid Helium Cryogenics.“ TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, Nr. 6 (1993): 304–15. http://dx.doi.org/10.2221/jcsj.28.304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sato, Yuki, und Richard Packard. „Superfluid helium interferometers“. Physics Today 65, Nr. 10 (Oktober 2012): 31–36. http://dx.doi.org/10.1063/pt.3.1749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tilley, John. „Superfluid helium 3“. Contemporary Physics 32, Nr. 5 (September 1991): 339–40. http://dx.doi.org/10.1080/00107519108223708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gessner, Oliver, und Andrey F. Vilesov. „Imaging Quantum Vortices in Superfluid Helium Droplets“. Annual Review of Physical Chemistry 70, Nr. 1 (14.06.2019): 173–98. http://dx.doi.org/10.1146/annurev-physchem-042018-052744.

Der volle Inhalt der Quelle
Annotation:
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kawasaki, Shinsuke, und Takahiro Okamura. „Cryogenic design for a high intensity ultracold neutron source at TRIUMF“. EPJ Web of Conferences 219 (2019): 10001. http://dx.doi.org/10.1051/epjconf/201921910001.

Der volle Inhalt der Quelle
Annotation:
The TUCAN (TRIUMF Ultra-Cold Advanced Neutron) collaboration has been developing a source of high-intensity ultra-cold neutrons for use in a neutron electric dipole search. The source is composed of a spallation neutron source and a superfluid helium ultra-cold neutron converter, surrounded by a cold moderator. The temperature of the superfluid helium needs to be maintained at approximately 1.0 K to suppress up-scattering by phonons. The Kapitza conductance and the heat transport by the superfluid helium are key parameters which need to be well characterized. We have therefore investigated them in first experiments. Current efforts are directed at optimizing the design of the helium cryostat.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

OWCZAREK, ROBERT. „KNOTTED VORTICES AND FERMIONIC EXCITATIONS IN BULK SUPERFLUID HELIUM“. Modern Physics Letters B 07, Nr. 21 (10.09.1993): 1383–86. http://dx.doi.org/10.1142/s0217984993001429.

Der volle Inhalt der Quelle
Annotation:
In the present paper, knotted and linked vortices in superfluid helium were considered, following ideas presented in Ref. 1. The conclusion is that fermionic excitations could exist in bulk superfluid helium filled by knotted and linked vortex filaments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Korostyshevskyi, O., C. K. Wetzel, D. M. Lee und V. V. Khmelenko. „Enhanced luminescence of oxygen atoms in solid molecular nitrogen nanoclusters“. Low Temperature Physics 50, Nr. 9 (01.09.2024): 722–32. http://dx.doi.org/10.1063/10.0028138.

Der volle Inhalt der Quelle
Annotation:
We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sótér, Anna, Hossein Aghai-Khozani, Dániel Barna, Andreas Dax, Luca Venturelli und Masaki Hori. „High-resolution laser resonances of antiprotonic helium in superfluid 4He“. Nature 603, Nr. 7901 (16.03.2022): 411–15. http://dx.doi.org/10.1038/s41586-022-04440-7.

Der volle Inhalt der Quelle
Annotation:
AbstractWhen atoms are placed into liquids, their optical spectral lines corresponding to the electronic transitions are greatly broadened compared to those of single, isolated atoms. This linewidth increase can often reach a factor of more than a million, obscuring spectroscopic structures and preventing high-resolution spectroscopy, even when superfluid helium, which is the most transparent, cold and chemically inert liquid, is used as the host material1–6. Here we show that when an exotic helium atom with a constituent antiproton7–9 is embedded into superfluid helium, its visible-wavelength spectral line retains a sub-gigahertz linewidth. An abrupt reduction in the linewidth of the antiprotonic laser resonance was observed when the liquid surrounding the atom transitioned into the superfluid phase. This resolved the hyperfine structure arising from the spin–spin interaction between the electron and antiproton with a relative spectral resolution of two parts in 106, even though the antiprotonic helium resided in a dense matrix of normal matter atoms. The electron shell of the antiprotonic atom retains a small radius of approximately 40 picometres during the laser excitation7. This implies that other helium atoms containing antinuclei, as well as negatively charged mesons and hyperons that include strange quarks formed in superfluid helium, may be studied by laser spectroscopy with a high spectral resolution, enabling the determination of the particle masses9. The sharp spectral lines may enable the detection of cosmic-ray antiprotons10,11 or searches for antideuterons12 that come to rest in liquid helium targets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Banaszkiewicz, T., M. Chorowski, P. Duda, P. Felisiak und J. Poliński. „Cryogenic Distribution System for Polish Free Electron Laser Facility“. IOP Conference Series: Materials Science and Engineering 1301, Nr. 1 (01.05.2024): 012100. http://dx.doi.org/10.1088/1757-899x/1301/1/012100.

Der volle Inhalt der Quelle
Annotation:
Abstract Polish Free Electron Laser facility (PolFEL), presently under construction at the National Centre for Nuclear Research in Warsaw, will consist of an electron gun and four cryomodules each housing two 9-cell superconducting TESLA RF cavities. The cryomodules comprising the cavities will be supplied with superfluid helium at 2 K. Other PolFEL cooling power requirements result from the demand of the power couplers for the accelerating cryomodules (5 K) and thermal shields (40 K – 80 K). The machine will make use of several helium thermodynamic states like two-phase superfluid HeII, supercritical helium and low-pressure helium vapours supplied to cold compressors. A Cryogenic Distribution System (CDS) will provide supercritical helium to the valve-boxes where thermodynamic processing of the helium to a superfluid state will take place. The paper presents the CDS architecture and discusses the possible design options like methods of the power couplers cooling, optional use and location of cold compressors. The second law of thermodynamics has been used for the optimization of the CDS configuration. A generalized approach to the design of helium distribution systems, taking into account thermomechanical aspects and the consequences of the second law of thermodynamics, is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Krasnoperov, E., E. Meilikhov, R. Abela, D. Herlach, E. Morenzoni, F. N. Gygax, A. Schenck und D. Eschenko. „Muonium in superfluid helium“. Physical Review Letters 69, Nr. 10 (07.09.1992): 1560–63. http://dx.doi.org/10.1103/physrevlett.69.1560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Woodhouse, C. E., A. Kashani und A. T. Lukemire. „Superfluid helium tanker instrumentation“. IEEE Transactions on Instrumentation and Measurement 39, Nr. 1 (1990): 274–78. http://dx.doi.org/10.1109/19.50464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

McClintock, Peter. „Whistles from superfluid helium“. Nature 388, Nr. 6641 (Juli 1997): 421–23. http://dx.doi.org/10.1038/41209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gully, P. „Superfluid Helium Heat Pipe“. Physics Procedia 67 (2015): 625–30. http://dx.doi.org/10.1016/j.phpro.2015.06.106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kamiya, Naoki, Kazuki Kuramoto, Kento Takishima, Tatsuya Yumoto, Haruka Oda, Takeshi Shimi, Hiroshi Kimura, Michio Matsushita und Satoru Fujiyoshi. „Superfluid helium nanoscope insert with millimeter working range“. Review of Scientific Instruments 93, Nr. 10 (01.10.2022): 103703. http://dx.doi.org/10.1063/5.0107395.

Der volle Inhalt der Quelle
Annotation:
A superfluid helium insert was developed for cryogenic microscopy of millimeter-sized specimens. An optical-interferometric position sensor, cryogenic objective mirror, and piezo-driven cryogenic stage were fixed to an insert holder that was immersed in superfluid helium. The single-component design stabilized the three-dimensional position of the sample, with root-mean-square deviations of ( x, lateral) 0.33 nm, ( y, lateral) 0.29 nm, and ( z, axial) 0.25 nm. Because of the millimeter working range of the optical sensor, the working range of the sample under the active stabilization was ( x, y) 5 mm and ( z) 3 mm in superfluid helium at 1.8 K. The insert was used to obtain the millimeter-sized fluorescence image of cell nuclei at 1.8 K without a sample exchange.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hizhnyakov, V., V. Boltrushko, G. Benedek und P. Moroshkin. „Singular vibronic interaction in liquids: manifestation in the optical spectrum of impurity atoms in superfluid helium“. Journal of Physics: Conference Series 2769, Nr. 1 (01.05.2024): 012010. http://dx.doi.org/10.1088/1742-6596/2769/1/012010.

Der volle Inhalt der Quelle
Annotation:
Abstract The zero phonon line (ZPL) and its phonon-roton wing have been studied both experimentally and theoretically in the optical spectrum of the inner shell transition in the Dy atom in superfluid helium. It is shown that the linear vibronic interaction of impurity atom with long-wave acoustic phonons in the liquid phase is singularly enhanced. As a result, the ZPL of both the superfluid and normal components of liquid helium has a finite width. The temperature dependence of the spectrum is a consequence of the redistribution of the superfluid and normal components of the liquid helium and the temperature dependence of the spectrum of its normal component. Our calculations of the ZPL and its phonon-rotor wing are consistent with the experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gauthier, Guillaume, Matthew T. Reeves, Xiaoquan Yu, Ashton S. Bradley, Mark A. Baker, Thomas A. Bell, Halina Rubinsztein-Dunlop, Matthew J. Davis und Tyler W. Neely. „Giant vortex clusters in a two-dimensional quantum fluid“. Science 364, Nr. 6447 (27.06.2019): 1264–67. http://dx.doi.org/10.1126/science.aat5718.

Der volle Inhalt der Quelle
Annotation:
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. In this study, we experimentally realize these vortex clusters in a planar superfluid: a 87Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long time periods, maintaining the superfluid system in a high-energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures and have relevance for the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Efimov, V. B., A. N. Izotov und L. P. Mezhov-Deglin. „Helium impurity nanocluster gels in superfluid helium“. Bulletin of the Russian Academy of Sciences: Physics 77, Nr. 1 (Januar 2013): 48–52. http://dx.doi.org/10.3103/s1062873813010085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jahangiri, Ali, und Mojtaba Biglari. „The stability of vapor film immersed in superfluid helium on the surface of the hot ball“. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 230, Nr. 6 (03.08.2016): 433–39. http://dx.doi.org/10.1177/0954408914559571.

Der volle Inhalt der Quelle
Annotation:
In this article, the evolution of vapor film on the surfaces of hot objects immersed in a cryogenic superfluid helium liquid is considered. It is assumed that at the beginning of the process, a thin film of steam exists on the surface of the object that has a spherical shape. If the heat flux is greater than the critical heat flux, the growth of vapor film will continue, otherwise it will collapse. Survey and analysis of the previously mentioned problem has been done using numerical method and the main onjectives are as follows: (a) study the evolution of the vapor film immersed in superfluid helium on the surface of the hot ball and (b) the stability of vapor film immersed in superfluid helium on the surface of the hot ball.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

LO, SHUI-YIN. „HIGHLY CHARGED SUPERFLUID HELIUM CLUSTER BEAM“. International Journal of Modern Physics B 10, Nr. 06 (15.03.1996): 713–27. http://dx.doi.org/10.1142/s0217979296000301.

Der volle Inhalt der Quelle
Annotation:
A device is proposed that can produce highly charged superfluid helium clusters, which can be as small as a micron. Each cluster then contains a large number of coherent helium atoms that can be accelerated together.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gessner, Oliver, Christoph Bostedt und Andrey Vilesov. „Single-Shot X-Ray Coherent Diffractive Imaging of Superfluid He Nanodroplets“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C289. http://dx.doi.org/10.1107/s2053273314097101.

Der volle Inhalt der Quelle
Annotation:
Single-shot coherent diffractive imaging (CDI) experiments were performed on pure and doped helium nanodroplets using femtosecond X-ray pulses from the Linac Coherent Light Source (LCLS). The superfluid nature of helium droplets presents a rare opportunity to study the onset of macroscopic quantum phenomena in finite, sub-micron scale systems. Despite the small X-ray scattering cross sections of atomic helium, high-quality single-shot CDI data were obtained that give direct access to sizes and shapes of individual nanodroplets. The diffraction patterns from helium droplets doped with xenon atoms differ starkly from the patterns from pure droplets. Strong indications for the formation of complex xenon structures inside the superfluid helium environment are observed, giving access to information about the structure and aggregation dynamics of the dopant species. The results are discussed with respect to the hydrodynamic properties of the superfluid droplets and compared to those of classical drops. An outlook on femtosecond time-resolved CDI experiments to study dynamics in pure and Xe-doped He nanodroplets will be given based on a new undulator-based X-ray pump/X-ray probe technique that is currently under development at LCLS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Карабулин, А. В., М. И. Кулиш, В. И. Матюшенко und М. Е. Степанов. „Динамика теплового излучения, сопровождающего конденсацию паров вольфрама в газообразном и сверхтекучем гелии“. Журнал технической физики 91, Nr. 4 (2021): 649. http://dx.doi.org/10.21883/jtf.2021.04.50629.258-20.

Der volle Inhalt der Quelle
Annotation:
In this work the cooling of the products of pulsed laser ablation of a tungsten target in vacuum, helium gas and in liquid superfluid helium was investigated by pyrometric measurements. It was shown that quantitative measurements of the characteristics of thermal emission make it possible to clarify the features of the mechanisms of the condensation processes of nanostructures in these media. The obtained data were used to calculate the cross sections of the emitting particles. It was shown that in vacuum mainly submicron particles emit, while in superfluid helium - nanoparticles. The results obtained are confirmed by the data of electron microscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sachkou, Yauhen P., Christopher G. Baker, Glen I. Harris, Oliver R. Stockdale, Stefan Forstner, Matthew T. Reeves, Xin He et al. „Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip“. Science 366, Nr. 6472 (19.12.2019): 1480–85. http://dx.doi.org/10.1126/science.aaw9229.

Der volle Inhalt der Quelle
Annotation:
Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi–two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

KOBAYASHI, Hisayasu. „Diversity of Superfluid Helium Cooling“. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 55, Nr. 2 (20.03.2020): 125–31. http://dx.doi.org/10.2221/jcsj.55.125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nemirovskii, S. K. „Nonlinear acoustics of superfluid helium“. Uspekhi Fizicheskih Nauk 160, Nr. 6 (1990): 51. http://dx.doi.org/10.3367/ufnr.0160.199006b.0051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Hall, H. E. „Mechanical experiments in superfluid helium“. Uspekhi Fizicheskih Nauk 164, Nr. 12 (1994): 1278. http://dx.doi.org/10.3367/ufnr.0164.199412h.1278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Peterson, I. „Quantum Swirls in Superfluid Helium“. Science News 138, Nr. 8 (25.08.1990): 118. http://dx.doi.org/10.2307/3975195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Nemirovskii, S. K. „Rayleigh Problem in Superfluid Helium“. Journal of Engineering Thermophysics 30, Nr. 4 (Oktober 2021): 607–14. http://dx.doi.org/10.1134/s1810232821040044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ceperley, David. „Numerical Simulations in Superfluid Helium“. Physica Scripta T33 (01.01.1990): 11. http://dx.doi.org/10.1088/0031-8949/1990/t33/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Schott, W., J. M. Pendlebury, I. Altarev, S. Gröger, E. Gutsmiedl, F. J. Hartmann, S. Paul, G. Petzoldt, P. Schmidt-Wellenburg und U. Trinks. „UCN production in superfluid helium“. European Physical Journal A 16, Nr. 4 (April 2003): 599–601. http://dx.doi.org/10.1140/epja/i2002-10128-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ceperley, David. „Superfluid helium as a vacuum“. Physics World 11, Nr. 6 (Juni 1998): 19. http://dx.doi.org/10.1088/2058-7058/11/6/19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Bowley, Roger. „Simplicity works for superfluid helium“. Physics World 13, Nr. 2 (Februar 2000): 24–25. http://dx.doi.org/10.1088/2058-7058/13/2/31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cramer, M. S., und R. Sen. „Nonlinearity parameters for superfluid helium“. Journal of the Acoustical Society of America 82, S1 (November 1987): S11. http://dx.doi.org/10.1121/1.2024627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Buchanan, Mark. „Physics award acclaims superfluid helium“. Nature 383, Nr. 6601 (Oktober 1996): 562. http://dx.doi.org/10.1038/383562a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Zurek, W. H. „Cosmological experiments in superfluid helium?“ Nature 317, Nr. 6037 (Oktober 1985): 505–8. http://dx.doi.org/10.1038/317505a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Harms, Jan, J. Peter Toennies und Franco Dalfovo. „Density of superfluid helium droplets“. Physical Review B 58, Nr. 6 (01.08.1998): 3341–50. http://dx.doi.org/10.1103/physrevb.58.3341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Nemirovskiĭ, S. K. „Nonlinear acoustics of superfluid helium“. Soviet Physics Uspekhi 33, Nr. 6 (30.06.1990): 429–52. http://dx.doi.org/10.1070/pu1990v033n06abeh002599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hall, H. E. „Mechanical experiments in superfluid helium“. Physics-Uspekhi 37, Nr. 12 (31.12.1994): 1188–89. http://dx.doi.org/10.1070/pu1994v037n12abeh001444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Efimov, V. B., A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock und L. P. Mezhov-Deglin. „Rogue waves in superfluid helium“. European Physical Journal Special Topics 185, Nr. 1 (Juli 2010): 181–93. http://dx.doi.org/10.1140/epjst/e2010-01248-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Stajic, J. „X-raying superfluid helium droplets“. Science 345, Nr. 6199 (21.08.2014): 886–88. http://dx.doi.org/10.1126/science.345.6199.886-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

S. Paoletti, Matthew, Ralph B. Fiorito, Katepalli R. Sreenivasan und Daniel P. Lathrop. „Visualization of Superfluid Helium Flow“. Journal of the Physical Society of Japan 77, Nr. 11 (15.11.2008): 111007. http://dx.doi.org/10.1143/jpsj.77.111007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Koplik, Joel, und Herbert Levine. „Vortex reconnection in superfluid helium“. Physical Review Letters 71, Nr. 9 (30.08.1993): 1375–78. http://dx.doi.org/10.1103/physrevlett.71.1375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Caupin, F., D. O. Edwards und H. J. Maris. „Thermodynamics of metastable superfluid helium“. Physica B: Condensed Matter 329-333 (Mai 2003): 185–86. http://dx.doi.org/10.1016/s0921-4526(02)01943-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Chagovets, Tymofiy V. „Electric response in superfluid helium“. Physica B: Condensed Matter 488 (Mai 2016): 62–66. http://dx.doi.org/10.1016/j.physb.2016.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Takita, Maika, und S. A. Lyon. „Isolating electrons on superfluid helium“. Journal of Physics: Conference Series 568, Nr. 5 (08.12.2014): 052034. http://dx.doi.org/10.1088/1742-6596/568/5/052034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Meichle, David P., und Daniel P. Lathrop. „Nanoparticle dispersion in superfluid helium“. Review of Scientific Instruments 85, Nr. 7 (Juli 2014): 073705. http://dx.doi.org/10.1063/1.4886811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

WILSON, ELIZABETH. „Helium Supersolid Has Superfluid Properties“. Chemical & Engineering News 82, Nr. 3 (19.01.2004): 14. http://dx.doi.org/10.1021/cen-v082n003.p014a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kebukawa, Takeji, und Shosuke Sasaki. „Josephson Oscillation in Superfluid Helium“. Physica B: Condensed Matter 165-166 (August 1990): 763–64. http://dx.doi.org/10.1016/s0921-4526(90)81231-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie