Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Helium Superfluid“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Helium Superfluid" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Helium Superfluid"
BRUSOV, PETER, und PAVEL BRUSOV. „NOVEL SOUND PHENOMENA IN IMPURE SUPERFLUIDS“. International Journal of Modern Physics B 20, Nr. 03 (30.01.2006): 355–80. http://dx.doi.org/10.1142/s021797920603322x.
Der volle Inhalt der QuelleHIRSCH, J. E. „KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY AND SUPERFLUIDITY“. Modern Physics Letters B 25, Nr. 29 (20.11.2011): 2219–37. http://dx.doi.org/10.1142/s0217984911027613.
Der volle Inhalt der QuelleOWCZAREK, ROBERT. „KNOTTED VORTICES AND SUPERFLUID PHASE TRANSITION“. Modern Physics Letters B 07, Nr. 23 (10.10.1993): 1523–26. http://dx.doi.org/10.1142/s0217984993001557.
Der volle Inhalt der QuelleSATO, Akio. „Superfluid Helium Cryogenics.“ TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, Nr. 6 (1993): 304–15. http://dx.doi.org/10.2221/jcsj.28.304.
Der volle Inhalt der QuelleSato, Yuki, und Richard Packard. „Superfluid helium interferometers“. Physics Today 65, Nr. 10 (Oktober 2012): 31–36. http://dx.doi.org/10.1063/pt.3.1749.
Der volle Inhalt der QuelleTilley, John. „Superfluid helium 3“. Contemporary Physics 32, Nr. 5 (September 1991): 339–40. http://dx.doi.org/10.1080/00107519108223708.
Der volle Inhalt der QuelleGessner, Oliver, und Andrey F. Vilesov. „Imaging Quantum Vortices in Superfluid Helium Droplets“. Annual Review of Physical Chemistry 70, Nr. 1 (14.06.2019): 173–98. http://dx.doi.org/10.1146/annurev-physchem-042018-052744.
Der volle Inhalt der QuelleKawasaki, Shinsuke, und Takahiro Okamura. „Cryogenic design for a high intensity ultracold neutron source at TRIUMF“. EPJ Web of Conferences 219 (2019): 10001. http://dx.doi.org/10.1051/epjconf/201921910001.
Der volle Inhalt der QuelleOWCZAREK, ROBERT. „KNOTTED VORTICES AND FERMIONIC EXCITATIONS IN BULK SUPERFLUID HELIUM“. Modern Physics Letters B 07, Nr. 21 (10.09.1993): 1383–86. http://dx.doi.org/10.1142/s0217984993001429.
Der volle Inhalt der QuelleKorostyshevskyi, O., C. K. Wetzel, D. M. Lee und V. V. Khmelenko. „Enhanced luminescence of oxygen atoms in solid molecular nitrogen nanoclusters“. Low Temperature Physics 50, Nr. 9 (01.09.2024): 722–32. http://dx.doi.org/10.1063/10.0028138.
Der volle Inhalt der QuelleDissertationen zum Thema "Helium Superfluid"
Matthias, John Robert. „Quantum evaporation from superfluid helium“. Thesis, University of Exeter, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390167.
Der volle Inhalt der QuelleRorai, Cecilia. „Vortex reconnection in superfluid helium“. Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7868.
Der volle Inhalt der QuelleLa presente tesi concerne la modellizzazione e simulazione numerica, attraverso l'equazione di Gross-Pitaevskii (chiamata anche equazione di Schroedinger non lineare), della dinamica dei vortici quantistici nell'elio superfluido e in particolare del fenomeno della riconnessione. La riconnessione si verifica qualora due vortici approssimativamente antiparalleli, si intersecano e si scambiano le estremità. Questo fenomeno è stato osservato sperimentalmente e risulta essere una caratteristica essenziale della turbolenza quantistica.
XXIII Ciclo
1983
Boatwright, Adrian Lional. „Molecular behaviour in superfluid helium clusters“. Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478961.
Der volle Inhalt der QuelleBlancafort, Jorquera Miquel. „Theoretical reaction and relaxation dynamics in superfluid helium nanodroplets“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668116.
Der volle Inhalt der QuelleLes nanogotes d’heli superfluid (HeNDs) són matrius inerts i nanoreactors ideals a baixa temperatura (0.37 K). Això ha atret l’atenció de químics doncs permeten realitzar espectroscopia d’altra resolució, estudiar la reactivitat i sintetitzar en condicions especials. L’estudi teòric de la dinàmica de processos en HeND ha estat possible tan sols fa cinc anys i, tot i el seu interès, n’hi ha molt pocs estudis. L’objectiu d’aquesta tesi és contribuir a la recerca en aquesta àrea. El Capítol 1 descriu les propietats de l’heli, la història de la superfluïdesa i les propietats i aplicacions de les HeNDs. La teoria del funcional de la densitat (DFT) i l’extensió de la mateixa depenent del temps (TDDFT), els principals funcionals per HeNDs i els mètodes numèrics es presenten al Capítol 2. Els següents capítols contenen els estudis originals d’aquesta tesi. En el Capítol 3 s’investiga la captura de Ne en una HeND on l’àtom es tracta clàssicament. El mecanisme, els intercanvis d’energia i moment angular i la formació de vòrtexs s’han analitzat àmpliament. Aquest és el primer anàlisi rigorós de la influència del moment angular en la captura i formació de vòrtexs. El Capítol 4 descriu la formació de Ne2/Ne-Ne en HeND tractant ambdós àtoms clàssicament. El mecanisme, bescanvis d’energia i moment angular i formació de vòrtexs també s’han estudiat. És el segon estudi sobre reaccions bimoleculars en HeNDs. Els Capítols 3 i 4 complementen i amplien dues investigacions del nostre grup on els àtoms es van tractar quànticament amb moment angular zero. En els propers dos capítols es consideren les relaxacions rotacional i vibracional utilitzant enfocs quàntics híbrids. El Capítol 5 correspon al primer estudi teòric de la relaxació rotacional de molècules en HeNDs, i s’han considerat varis isòtops de H2 i excitacions inicials i mides de nanogota. El Capítol 6 detalla la influència de la separació energètica vibracional, interacció molècula-heli i mida de nanogota en la relaxació vibracional en HeNDs, agafant com a referència el sistema I2@(4He)100. És el primer cop que s’examina l’efecte d’aquestes propietats clau. Els Capítols 7 i 8 presenten les principals conclusions i un resum en català, respectivament.
Las nanogotas de helio superfluido (HeNDs) son matrices inertes y nanoreactores ideales a baja temperatura (0.37 K). Esto ha atraído a los químicos pues posibilitan realizar espectroscopia de alta resolución, así como estudiar de la reactividad y síntesis en condiciones especiales. La dinámica teórica de procesos en HeND ha sido posible tan sólo hace cinco años y, a pesar de su interés, todavía hay muy pocos estudios. Esta tesis pretende contribuir a la investigación en esta área. El Capítulo 1 describe las propiedades del helio, la superfluidez y las propiedades y aplicaciones de las HeNDs. La teoría del funcional de la densidad (DFT) y su extensión dependiente del tiempo (TDDFT), los principales funcionales para HeNDs y los métodos numéricos se presentan en el Capítulo 2. Los siguientes capítulos contienen los estudios originales de esta tesis. En el Capítulo 3 se investiga la captura de Ne en una HeND donde el átomo se trata clásicamente. El mecanismo microscópico, intercambios de energía y momento angular y formación de vórtices se han analizado ampliamente. Este es el primer análisis detallado de la influencia del momento angular en la captura y la formación de vórtices. El Capítulo 4 describe la formación de Ne2/Ne-Ne en HeND tratando ambos átomos clásicamente. El mecanismo, intercambios de energía y momento angular y formación de vórtices también se han estudiado. Los Capítulos 3 y 4 complementan y amplían dos investigaciones de nuestro grupo donde los átomos se trataron cuánticamente con momento angular cero. En los dos capítulos siguientes se estudian las relajaciones rotacional y vibracional utilizando enfoques cuánticos híbridos. El Capítulo 5 corresponde al primer estudio teórico de la relajación rotacional de moléculas en HeNDs, y se han considerando varios isótopos de H2, excitaciones iniciales y tamaños de nanogota. El Capítulo 6 detalla la influencia de la separación energética, interacción molécula-helio y tamaño de nanogota en la relajación vibracional en HeND, habiéndose tomando como referencia el sistema I2@(4He)100. Es la primera vez que se examina el efecto de estas propiedades clave en la dinámica. Los Capítulos 7 y 8 presentan las principales conclusiones y un resumen en catalán, respectivamente.
Bryan, Matthew S. „Inelastic Neutron Scattering of Nanoconfined Superfluid Helium“. Thesis, Indiana University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10842052.
Der volle Inhalt der QuelleThe dynamics of liquid 4He confined in a mesoporous powder FSM-16 are reported in this dissertation, including the roton linewidth, excitation spectrum, and Compton profile. With an ordered triangular lattice structure, FSM-16 is a high surface area porous glass with hexagonal pores a few nanometers in diameter. Neutron backscattering results examined the roton linewidth as a function of temperature. Observed linewidths in confinement are consistent with the theoretical and experimental results of the bulk liquid. The temperature-filling phase diagram was explored at intermediate fillings and low temperatures. The maxon and roton excitations are used as indicators of density for a thin-film that transitions into a three dimensional confined fluid. The resulting excitation spectrum at low fillings does not correspond to the bulk liquid at any pressure. The deep inelastic neutron scattering results found an enhanced single particle kinetic energy, with full pore and thin film liquid deviating from the bulk momentum distribution in shape.
Lorenson, Claude Pierre. „Dynamical properties of superfluid turbulence /“. The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726339902566.
Der volle Inhalt der QuelleCregan, Robert Fraser. „Defects on the free surface of superfluid helium“. Thesis, University of Exeter, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261949.
Der volle Inhalt der QuelleFeng, Cheng. „Superfluid helium droplets : from spectroscopy to magnetic nanoparticles“. Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/32439.
Der volle Inhalt der QuelleOhya, Masayoshi. „Stability of superconducting magnets cooled by superfluid helium“. Kyoto University, 2006. http://hdl.handle.net/2433/143795.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(エネルギー科学)
甲第12421号
エネ博第128号
新制||エネ||32(附属図書館)
24257
UT51-2006-J412
京都大学大学院エネルギー科学研究科エネルギー応用科学専攻
(主査)教授 塩津 正博, 教授 宅田 裕彦, 助教授 白井 康之
学位規則第4条第1項該当
Coppens, François M. G. J. „Ultrafast quantum dynamics of doped superfluid helium nanodroplets“. Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30145/document.
Der volle Inhalt der QuelleIn this thesis we investigate two aspects of the dynamics of atomic impurities interacting with superfluid helium (He) nanodroplets, namely the photo-excitation of alkalis on a nanodroplet and the doping process of nanodroplets hosting quantised vortices with noble gas atoms. For the theoretical investigations we use He density functional theory and its time-dependent version. The first aspect involves a joint experimental and theoretical collaboration that focusses on the photo-excitation of the alkali rubidium (Rb). Alkalis are a very interesting probe of He droplets since they reside in their surface region, where it has been argued that almost 100% Bose-Einstein condensation could be achieved due to a density that is lower than in bulk superfluid He. In our simulations we find that states excited to the 5p and 6p manifold desorb at very different timescales, separated by 2 orders of magnitude (~100 ps and ~1 ps for 5p and 6p respectively). This is in good agreement with experimental results where the desorption behaviour of photo-excited Rb atoms is determined using a femtosecond pump-probe scheme. However, in our simulations excitation to the 5pPi_{3/2}-state results in a surface-bound RbHe exciplex, contrary to the experimental case where the RbHe exciplex desorbs from the droplets surface. Introducing spin-relaxation from Pi_{3/2} to Pi_{1/2} into the simulations, the RbHe exciplex is able to desorb from the droplet's surface, which resolves this contradiction. The second aspect concerns a purely theoretical investigation that is inspired by recent work of Gomez and Vilesov et al., where quantised vortices were visualised by doping He nanodroplets with silver atoms, subsequently "soft landing" them on a carbon screen. Electron-microscope images show long filaments of silver atom clusters that accumulated along the vortex cores. Also the formation of quantum-vortex lattices inside nanodroplets is evidenced by using X-ray diffractive imaging to visualise the characteristic Bragg patterns from xenon (Xe) clusters trapped inside the vortex cores. First, head-on collisions between heliophilic Xe and a He nanodroplet made of 1000 He atoms are studied. The results are then compared with the results of a previous study of an equivalent kinematic case with cesium (Cs), which is heliophobic. Xe acquires a "snowball" of He around itself when it traverses the droplet and much more kinetic energy is required before Xe is able to pierce the droplet completely. When it does, it takes away some He with it, contrary to the Cs case. Next, collisions between argon (Ar)/Xe and pristine superfluid He nanodroplets are performed for various initial velocities and impact parameters to determine the effective cross-section for capture. Finally, the simulations are then repeated for droplets hosting a single quantised vortex line. It is observed that the impact of the impurities induces large bending and twisting excitations of the vortex line, including the generation of helical Kelvin waves propagating along the vortex core. We conclude that Ar/Xe is captured by the quantised vortex line, although not in its core. Also we find that a He droplet, hosting a 6-vortex line array whose cores are filled with Ar atoms, results in added rigidity to the system which stabilises the droplets at low angular velocities. Our simulations involving droplets hosting quantum vortices open the way to further investigations on droplets hosting an array of vortices, involving multiple impurities
Bücher zum Thema "Helium Superfluid"
Slenczka, Alkwin, und Jan Peter Toennies, Hrsg. Molecules in Superfluid Helium Nanodroplets. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2.
Der volle Inhalt der QuelleUnited States. National Aeronautics and Space Administration., Hrsg. Superfluid Helium Tanker (SFHT) Study. [Denver, Colo.?]: Martin Marietta Astronautics Group, Space Systems, 1988.
Den vollen Inhalt der Quelle findenVollhardt, Dieter. The superfluid phases of helium 3. London: Taylor & Francis, 1990.
Den vollen Inhalt der Quelle findenVolovik, G. E. Exotic properties of superfluid 3 He. Singapore: World Scientific, 1992.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Temperature rise in superfluid helium pumps. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle finden1942-, Wölfle Peter, Hrsg. The superfluid phases of helium 3. Mineola, New York: Dover Publications, Inc., 2013.
Den vollen Inhalt der Quelle findenSciver, Steven W. Van. Final technical report on superfluid helium dynamics. [Madison, Wis.]: Nuclear Engineering & Engineering Physics, Univeristy of Wisconsin, 1990.
Den vollen Inhalt der Quelle findenJ, DiPirro M., und Ames Research Center, Hrsg. Superfluid Helium On-Orbit Transfer (SHOOT) operations. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenJ, DiPirro M., und Ames Research Center, Hrsg. Superfluid Helium On-Orbit Transfer (SHOOT) operations. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenLyndon B. Johnson Space Center., Hrsg. Superfluid Helium Tanker Study (SFHT): Program progress report. Sunnyvale, CA: Lockheed Missiles & Space Co., Inc., 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Helium Superfluid"
Schmitt, Andreas. „Superfluid Helium“. In Introduction to Superfluidity, 7–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07947-9_2.
Der volle Inhalt der QuelleSchlaghaufer, Florian, Johannes Fischer und Alkwin Slenczka. „Electronic Spectroscopy in Superfluid Helium Droplets“. In Topics in Applied Physics, 179–240. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_5.
Der volle Inhalt der QuelleFiszdon, W. „Waves in Superfluid Helium“. In Nonlinear Waves in Real Fluids, 273–334. Vienna: Springer Vienna, 1991. http://dx.doi.org/10.1007/978-3-7091-2608-0_8.
Der volle Inhalt der QuelleEberhardt, Ralph N., und John P. Gille. „Superfluid Helium Onorbit Resupply“. In Advances in Cryogenic Engineering, 311–20. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0639-9_38.
Der volle Inhalt der QuelleMinier, Vincent, Roger-Maurice Bonnet, Vincent Bontems, Thijs de Graauw, Matt Griffin, Frank Helmich, Göran Pilbratt und Sergio Volonte. „Superfluid Helium Cryostat Customisation“. In Inventing a Space Mission, 213–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60024-6_9.
Der volle Inhalt der QuelleZhang, Jie, Yunteng He, Lei Lei, Yuzhong Yao, Stephen Bradford und Wei Kong. „Electron Diffraction of Molecules and Clusters in Superfluid Helium Droplets“. In Topics in Applied Physics, 343–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_8.
Der volle Inhalt der QuelleSato, Y., E. Hoskinson und R. E. Packard. „Josephson Effects in Superfluid Helium“. In Fundamentals and Frontiers of the Josephson Effect, 765–810. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20726-7_19.
Der volle Inhalt der QuelleZudin, Yuri B. „Heat Transfer in Superfluid Helium“. In Non-equilibrium Evaporation and Condensation Processes, 297–320. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13815-8_13.
Der volle Inhalt der QuelleVinen, W. F. „Fifty Years of Superfluid Helium“. In Advances in Cryogenic Engineering, 1–14. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0639-9_1.
Der volle Inhalt der QuelleLappe, Tim. „Superfluid Helium: The Volovik Lessons“. In Experimental Search for Quantum Gravity, 15–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64537-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Helium Superfluid"
McAuslan, D. L., G. I. Harris, E. Sheridan und W. P. Bowen. „Superfluid Helium Optomechanics“. In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fw3b.6.
Der volle Inhalt der QuelleDomenikos, G. R., P. Bitsikas und E. Rogdakis. „Thermodynamic Modelling of Superfluid Stirling Cryocoolers“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10077.
Der volle Inhalt der QuelleYabuzaki, T., A. Fujisaki, K. Sano, T. Kinoshita und Y. Takahashi. „Laser spectroscopy in superfluid helium“. In Thirteenth International conference on atomic physics (ICAP-13). AIP, 1993. http://dx.doi.org/10.1063/1.43783.
Der volle Inhalt der QuelleHarris, G. I., D. L. McAuslan, C. Baker, Y. Sachkou, E. Sheridan, Z. Duan und W. P. Bowen. „Optomechanics with Superfluid Helium-4“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jth5b.2.
Der volle Inhalt der QuelleMinowa, Yosuke, Kensuke Kokado, Shota Aoyagi und Masaaki Ashida. „Quantum vortex visualization in superfluid helium“. In Optical Manipulation and Structured Materials Conference, herausgegeben von Takashige Omatsu, Hajime Ishihara, Keiji Sasaki und Kishan Dholakia. SPIE, 2020. http://dx.doi.org/10.1117/12.2573515.
Der volle Inhalt der QuelleLee, D. M. „The Discovery of Superfluid Helium-3“. In Proceedings of the 29th International Conference on Low Temperature Physics (LT29). Journal of the Physical Society of Japan, 2023. http://dx.doi.org/10.7566/jpscp.38.011001.
Der volle Inhalt der QuelleHarris, J. G. E., A. D. Kashkanova, A. B. Shkarin, C. D. Brown, S. Garcia, K. Ott und J. Reichel. „Quantum optomechanics experiments in superfluid helium“. In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.tu2b.1.
Der volle Inhalt der QuelleMASON, P., D. PETRAC, D. ELLEMAN, T. WANG, H. JACKSON, D. COLLINS, P. COWGILL und J. GATEWOOD. „The Spacelab 2 superfluid helium experiment“. In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-143.
Der volle Inhalt der QuelleNishigaki, K. „Observation of cavitation in superfluid helium“. In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the Cryogenic Engineering Conference - CEC. AIP, 2002. http://dx.doi.org/10.1063/1.1472163.
Der volle Inhalt der QuelleKaiser, G. „Thermo-Mechanical Pumps for Superfluid Helium“. In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774788.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Helium Superfluid"
Packard, Richard. Josephson Acoustic Radiation in Superfluid Helium. Fort Belvoir, VA: Defense Technical Information Center, Mai 1994. http://dx.doi.org/10.21236/ada279809.
Der volle Inhalt der QuellePackard, Richard. Josephson Acoustic Radiation in Superfluid Helium. Fort Belvoir, VA: Defense Technical Information Center, Mai 1995. http://dx.doi.org/10.21236/ada294424.
Der volle Inhalt der QuelleMiller, Roger E. Superfluid Helium Droplet Spectroscopy Equipment Development. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada413202.
Der volle Inhalt der QuelleGreene, G. L., und S. Lamoreaux. Production and storage of ultra cold neutrons in superfluid helium. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/334304.
Der volle Inhalt der QuelleGhosh, A. K., W. B. Sampson, S. W. Kim, D. Leroy, L. R. Oberli und M. N. Wilson. Stability measurements on cored cables in normal and superfluid helium. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/638203.
Der volle Inhalt der QuelleLanou, Robert E. ,. Jr. Particle Detection in Superfluid Helium: R&D for Low Energy Solar Neutrinos. Office of Scientific and Technical Information (OSTI), März 2006. http://dx.doi.org/10.2172/878465.
Der volle Inhalt der Quelle