Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Helical Dichroism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Helical Dichroism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Helical Dichroism"
Xie, Yun Zhi, Chun Hua Liu, Xun Li, Yi Bao Li und Xiao Lin Fan. „Asymmetry-Induced Supramolecular Helices of Pyrene-Perylene Bisimide Triads“. Advanced Materials Research 472-475 (Februar 2012): 462–65. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.462.
Der volle Inhalt der QuelleMiles, A. J., und B. A. Wallace. „Circular dichroism spectroscopy of membrane proteins“. Chemical Society Reviews 45, Nr. 18 (2016): 4859–72. http://dx.doi.org/10.1039/c5cs00084j.
Der volle Inhalt der QuelleLiu, Yong, Chao Li, Yaling Liu und Zhiyong Tang. „Helical silver(I)-glutathione biocoordination polymer nanofibres“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 2000 (13.10.2013): 20120307. http://dx.doi.org/10.1098/rsta.2012.0307.
Der volle Inhalt der QuelleDaly, Steven, Frédéric Rosu und Valérie Gabelica. „Mass-resolved electronic circular dichroism ion spectroscopy“. Science 368, Nr. 6498 (25.06.2020): 1465–68. http://dx.doi.org/10.1126/science.abb1822.
Der volle Inhalt der QuelleKaschke, Johannes, und Martin Wegener. „Optical and Infrared Helical Metamaterials“. Nanophotonics 5, Nr. 4 (01.09.2016): 510–23. http://dx.doi.org/10.1515/nanoph-2016-0005.
Der volle Inhalt der QuelleAla, Paul, Pele Chong, Vettai S. Ananthanarayanan, Neville Chan und Daniel S. C. Yang. „Synthesis and characterization of a fragment of an ice nucleation protein“. Biochemistry and Cell Biology 71, Nr. 5-6 (01.05.1993): 236–40. http://dx.doi.org/10.1139/o93-036.
Der volle Inhalt der QuelleAxelsen, P. H., B. K. Kaufman, R. N. McElhaney und R. N. Lewis. „The infrared dichroism of transmembrane helical polypeptides“. Biophysical Journal 69, Nr. 6 (Dezember 1995): 2770–81. http://dx.doi.org/10.1016/s0006-3495(95)80150-5.
Der volle Inhalt der QuelleRabenold, David A. „Circular dichroism band shapes for helical polymers“. Journal of Physical Chemistry 92, Nr. 17 (August 1988): 4863–68. http://dx.doi.org/10.1021/j100328a013.
Der volle Inhalt der QuelleKodaka, Masato. „Circular dichroism induced by helical host molecules“. Journal of the Chemical Society, Faraday Transactions 93, Nr. 11 (1997): 2057–59. http://dx.doi.org/10.1039/a700222j.
Der volle Inhalt der QuelleKaerkitcha, N., und T. Sagawa. „Amplified polarization properties of electrospun nanofibers containing fluorescent dyes and helical polymer“. Photochemical & Photobiological Sciences 17, Nr. 3 (2018): 342–51. http://dx.doi.org/10.1039/c7pp00413c.
Der volle Inhalt der QuelleDissertationen zum Thema "Helical Dichroism"
Yang, Lin. „Interaction of molecules and helical nanoparticles characterized by electronic circular dichroism“. HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/523.
Der volle Inhalt der QuelleStrong, Andrew Edward. „Self-assembling monolayers of helical oligopeptides with applications in molecular electronics“. Thesis, University of Strathclyde, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366950.
Der volle Inhalt der QuelleTakeda, Ryohei. „Effect of Chiral Solvent and Pressure on the Dynamic Screw-Sense Induction to Poly(quinoxaline-2,3-diyl)s“. Kyoto University, 2017. http://hdl.handle.net/2433/227637.
Der volle Inhalt der QuelleRahimiangolkhandani, Mitra. „Interaction of Structured Femtosecond Light Pulses with Matter“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42334.
Der volle Inhalt der QuelleKato, Kenichi. „Development of Fused Porphyrins with Unpaired Electrons and/or Chirality“. Kyoto University, 2020. http://hdl.handle.net/2433/253108.
Der volle Inhalt der QuelleTaboury, Jean. „Etude des conformations en double hélice droite et en double hélice gauche d'ADN synthétiques par plusieurs techniques spectroscopiques“. Paris 13, 1985. http://www.theses.fr/1985PA132021.
Der volle Inhalt der QuelleAdam, Safia. „Etude des conformations secondaires d'ADN synthétiques pas spectrométrie optique“. Paris 13, 1985. http://www.theses.fr/1985PA132001.
Der volle Inhalt der QuellePathan, Shaheen. „Développement de matériaux flexibles optiquement actifs basés sur des nanostructures hybrides chirales de modèle d’assemblage moléculaire“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0126.
Der volle Inhalt der QuelleIn this work, we focused on the creation of optically active chiral nanostructures by fabricating fluorescent silica nanohelices in order to obtain optically active nanoscale soft materials for applications as nanophotonics materials. For this purpose, silica chiral nanohelices were used for grafting and organizing achiral fluorescent inorganic nanocrystals, dyes, molecules, and fluorescent polymers through different approaches. These inorganic helices were formed via sol-gel method using organic helical self–assemblies of surfactant molecules (achiral and cationic gemini surfactant, with chiral counterion, tartrate) as templates. First, the surface of helical silica was functionalized by APTES in order to graft inorganic quantum dots ZnS-AgInS2 with different capping ligands. In the second part, fluorescent anthracene derivative polymer was organized via deposition and absorption on the surface of helical silica. To investigate the chiroptical properties, circular dichroism and circularly polarised luminescence characterization were performed.In the first chapter, the bibliographic study on different chiral organic self-assembling systems and their chiroptical properties are shown. The studies on the formation of chiral self-assembled systems in different conditions, structural morphology, fabrication techniques and their applications are discussed followed by the use of fluorescent nanocrystals, i.e., quantum dots (QDs) and achiral fluorescent polymers on which chiroptical properties can be obtained and their applications in optical nanodevices, sensors, and nano-photonics.In the first part of the second chapter, different characterisation techniques such as transmission electron microscope (TEM) , high resolution transmission electron microscope (HRTEM), and confocal microscopy, UV-Vis spectroscopy and fluorescence spectroscopies, as well as circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies are described. In the second part, the synthesis of Gemini 16-2-16 as well as their self-assemblies mechanism, and their transformation to silica replica via sol-gel chemistry are described. These silica nanohelices are functionalized by 3-aminopropyltriethoxysilane (APTES). Their analysis is performed by Thermogravimetric analysis (TGA) and elementary analysis (EA).In the third Chapter, we focused on the synthesis of inorganic ((ZnS)x-1(AgInS2)x) QDs with different compositions molar ratio and its characterizations by TEM, TGA, EA, Fourier-transform infrared spectroscopy (FTIR), zeta potential measurements, absorption, and emission spectroscopy. Four types of ligands were used to cap the QDs via phase ligand exchange as follows: ammonium sulphide (AS), 3-mercaptopropionic acid (MPA), l-cysteine (L-Cys) and the fourth one is oleylamine (OLA). These QDs are grafted on the surface of amine-modified silica helices through ionic interaction. Various techniques were used to show the grafting of QDs on the surface of silica helix, and their optical properties were studied using absorption and emission spectroscopy. After grafting, in each case of ligands, different results were observed as follows: The TEM characterization shows that QDs are grafted on the surface of silica helices. In the case of AS-capped QDs, the helical morphology of silica helices after grafting is destroyed; therefore the further ananlysis was not possible. While, in the cases of QDs with three other ligands MPA, OLA and L-cys, dense and homogeneous grafting of the QDs were observed by TEM and the helical morphology was preserved after their grafting. The HRTEM images were taken on the MPA-QDs@silica helices and energy-dispersive x-ray (EDX) analysis was performed in STEM mode, confirming the QDs elements present on the silica surfaces. [...]
Mangavel, Cécile. „Peptides amphiphiles hélicogènes : comportement en solution aqueuse et interaction avec des membranes modèles“. Orléans, 1996. http://www.theses.fr/1996ORLE2043.
Der volle Inhalt der QuelleHöger, Geralin. „Self-Organization of β-Peptide Nucleic Acid Helices for Membrane Scaffolding“. Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0003-C187-A.
Der volle Inhalt der QuelleBuchteile zum Thema "Helical Dichroism"
Wang, Lijiang, Petr Pancoska und Timothy A. Keiderling. „Detection of Triple Helical Nucleic Acids with Vibrational Circular Dichroism“. In Fifth International Conference on the Spectroscopy of Biological Molecules, 81–82. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1934-4_27.
Der volle Inhalt der QuelleBatchelor, Matthew, Marcin Wolny, Marta Kurzawa, Lorna Dougan, Peter J. Knight und Michelle Peckham. „Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy“. In Methods in Molecular Biology, 185–211. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8556-2_10.
Der volle Inhalt der QuelleFasman, Gerald D., Kyusung Park und Andras Perczel. „Distinguishing Transmembrane Helices from Peripheral Helices by Circular Dichroism“. In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 17–38. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2718-9_3.
Der volle Inhalt der QuelleFasman, Gerald D. „Differentiation between Transmembrane Helices and Peripheral Helices by the Deconvolution of Circular Dichroism Spectra of Membrane Proteins“. In Circular Dichroism and the Conformational Analysis of Biomolecules, 381–412. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2508-7_10.
Der volle Inhalt der QuelleMoore, Dexter S. „Circular Dichroism of Large Oriented Helices: A Free Electron on a Helix“. In Applications of Circularly Polarized Radiation Using Synchrotron and Ordinary Sources, 147–57. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-9229-4_14.
Der volle Inhalt der QuelleRodger, Alison, und Matthew A. Ismail. „Introduction to circular dichroism“. In Spectrophotometry and Spectrofluorimetry. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780199638130.003.0008.
Der volle Inhalt der QuelleHayashi, Nobuhiro, Mamoru Matsubara, Koiti Titani und Hisaaki Taniguchi. „Involvement of basic amphiphilic α-helical domain in the reversible membrane interaction of amphitropic proteins: Structural studies by mass spectrometry, circular dichroism, and nuclear magnetic resonance“. In Techniques in Protein Chemistry, 555–64. Elsevier, 1997. http://dx.doi.org/10.1016/s1080-8914(97)80055-5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Helical Dichroism"
Citra, Mario J., M. G. Paterlini, Teresa B. Freedman, Adriano Fissi und Osvaldo Pieroni. „Vibrational circular dichroism studies of 3 10 -helical solution conformers in dehydro-peptides“. In Fourier Transform Spectroscopy: Ninth International Conference, herausgegeben von John E. Bertie und Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166677.
Der volle Inhalt der QuelleMuro, T. „A Measurement System For Circular Dichroism In Soft X-ray Absorption Using Helicity Switching By Twin Helical Undulators“. In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757978.
Der volle Inhalt der QuelleMuro, T., T. Nakamura, T. Matsushita, T. Wakita, K. Fukumoto, H. Kimura, T. Hirono et al. „Status of the Twin Helical Undulator Soft X-ray Beamline at SPring-8: Performance for Circular Dichroism Measurements“. In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436125.
Der volle Inhalt der QuelleKuball, Hans-Georg, Ralph Kolling, Holger Bruening und Bernhard Weiss. „Helical twisting power and circular dichroism as chirality observations: the intramolecular and intermolecular chirality transfer in a liquid crystal phase“. In Liquid Crystals, herausgegeben von Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski und Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299976.
Der volle Inhalt der QuelleXiong, Kan, Eliana K. Asciutto, Jeffry D. Madura, Sanford A. Asher, P. M. Champion und L. D. Ziegler. „Circular Dichroism and UV Resonance Raman Study of the Impact of Salts and Alcohols on the Gibbs Free Energy Landscape of an α-helical Peptide“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482854.
Der volle Inhalt der QuelleBenedetti, A., R. Li Voti, A. Belardini, M. Esposito, C. Sibilia, V. Tasco, A. Passaseo und G. Leahu. „Photoacoustic detection of circular dichroism in a square array of nano-helices“. In 2015 Fotonica AEIT Italian Conference on Photonics Technologies. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.0135.
Der volle Inhalt der QuelleNakano, Sota, Takeshi Fujisawa, Takanori Sato und Kunimasa Saitoh. „Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber“. In 2017 22nd Microoptics Conference (MOC). IEEE, 2017. http://dx.doi.org/10.23919/moc.2017.8244541.
Der volle Inhalt der Quelle