Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heat sales“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heat sales" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heat sales"
REISCH, MARC S. „FLAME RETARDANTS SALES HEAT UP“. Chemical & Engineering News 75, Nr. 8 (24.02.1997): 19–20. http://dx.doi.org/10.1021/cen-v075n008.p019.
Der volle Inhalt der QuelleLyu, Xiaozhong, Cuiqing Jiang, Yong Ding, Zhao Wang und Yao Liu. „Sales Prediction by Integrating the Heat and Sentiments of Product Dimensions“. Sustainability 11, Nr. 3 (11.02.2019): 913. http://dx.doi.org/10.3390/su11030913.
Der volle Inhalt der QuelleAddoum, Jawad M., David T. Ng und Ariel Ortiz-Bobea. „Temperature Shocks and Establishment Sales“. Review of Financial Studies 33, Nr. 3 (14.02.2020): 1331–66. http://dx.doi.org/10.1093/rfs/hhz126.
Der volle Inhalt der QuelleZhang, Guoquan, und Haibin Qiu. „Competitive Product Identification and Sales Forecast Based on Consumer Reviews“. Mathematical Problems in Engineering 2021 (16.09.2021): 1–15. http://dx.doi.org/10.1155/2021/2370692.
Der volle Inhalt der QuelleLi, Yong, und Tian Jiao Jia. „Mathematical Model of the Generated Energy Based on “Ordering Power by Heat”“. Advanced Materials Research 608-609 (Dezember 2012): 1294–97. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1294.
Der volle Inhalt der QuelleParker, James, David Glew, Martin Fletcher, Felix Thomas und Christopher Gorse. „Accounting for refrigeration heat exchange in energy performance simulations of large food retail buildings“. Building Services Engineering Research and Technology 38, Nr. 3 (28.10.2016): 253–68. http://dx.doi.org/10.1177/0143624416675389.
Der volle Inhalt der QuelleLin, Chun-Wei R., Yuh-Jiuan Melody Parng und Yu-Lin Chen. „Profit optimization of sustainable low-to-medium temperature waste heat recovering management“. Industrial Management & Data Systems 118, Nr. 2 (12.03.2018): 330–48. http://dx.doi.org/10.1108/imds-04-2017-0148.
Der volle Inhalt der QuelleСазонова, Светлана, Svetlana Sazonova, Сергей Николенко, S. Nikolenko, Максим Манохин und Maksim Manohin. „DEVELOPMENT OF MATHEMATICAL MODELS FOR MONITORING WATER HEAT HEATING WITH SALES OF VALUABLE ROCKS OF FORESTS“. Forestry Engineering Journal 8, Nr. 3 (10.09.2018): 30–35. http://dx.doi.org/10.12737/article_5b97a15e9393c4.46673542.
Der volle Inhalt der QuelleKim, Hyo-Jin, Jae-Sung Baek und Seung-Hoon Yoo. „Price Elasticity of Heat Demand in South Korean Manufacturing Sector: An Empirical Investigation“. Sustainability 11, Nr. 21 (04.11.2019): 6144. http://dx.doi.org/10.3390/su11216144.
Der volle Inhalt der QuelleAtănăsoae, Pavel. „The Operating Strategies of Small-Scale Combined Heat and Power Plants in Liberalized Power Markets“. Energies 11, Nr. 11 (10.11.2018): 3110. http://dx.doi.org/10.3390/en11113110.
Der volle Inhalt der QuelleDissertationen zum Thema "Heat sales"
Rodríguez-Laguna, María del Rocío. „Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion“. Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667803.
Der volle Inhalt der QuelleHeat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission.
DiGuilio, Ralph Michael. „The thermal conductivity of molten salts and concentrated aqueous salt solutions“. Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/11847.
Der volle Inhalt der QuelleCoyle, Carolyn Patricia. „Advancing radiative heat transfer modeling in high-temperature liquid-salts“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129113.
Der volle Inhalt der QuelleCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 125-133).
Nuclear and solar-thermal communities are investigating the use of high Prandtl number liquid-salts in energy generation systems, including fluoride salt-cooled high-temperature reactors (FHRs), molten salt reactors (MSRs), fusion devices, and concentrated solar power plants. The temperature distribution in the coolant salts can be affected by participating media radiative heat transfer, due to the high temperature operation and their semitransparent nature. Computational fluid dynamics (CFD) becomes a valuable tool to model the complex 3-dimensional nature of the heat transfer, especially in regions where temperature-dependent material corrosion drives the need for accurate local temperature predictions. Correctly modeling radiative heat transfer in CFD requires well-characterized liquid-salt optical properties, which are not yet known. Additionally, current CFD approaches can become computationally too expensive for practical use when spectral effects need to be resolved.
A lower cost approach, capable of still resolving the coupled convective-radiative heat transfer is therefore needed. In this thesis, an experimental apparatus for measuring the spectral absorption coefficients of 46.5%LiF:11.5%NaF:42%KF (FLiNaK) and 50%NaCl:50%KCl is designed and validated to have high-measurement accuracy in the transmissive and multiphonon absorption regions where radiative emissions peak. A high-fidelity CFD methodology is then developed to model participating media radiative heat transfer. The approach defines a consistent, spectral banding procedure that captures non-gray absorption behavior at reasonable computational cost. The methodology is applied to CFD simulations of a twisted elliptical tube heat exchanger geometry, where local, 3-dimensional effects are especially significant.
A matrix of simulation results comparing FLiNaK and 66.6%LiF:33.4%BeF2 (FLiBe) coolants provides a quantitative assessment of the thermal radiation contributions to the overall heat transfer. Laminar flows, expected in accident scenarios, experience the strongest effect, where lower average wall temperatures and enhanced temperature uniformity result in an effective Nusselt number increase of up to 11%. Turbulent flows see a reduction in maximum local wall temperatures up to 25'C, which could have a notable impact on reducing corrosion effects. The observed trends demonstrate the larger impact of radiation effects in FLiBe simulations due to larger absorption in BeF2. This suggests thermal radiation may be more dominant in MSRs, where dissolved fuel and impurities increase absorption.
The method proposed to include the effects of thermal radiation in CFD analysis can support a more effective and accurate design of high temperature systems and components, providing increased safety margins for operation.
by Carolyn Patricia Coyle.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Nuclear Science and Engineering
Čech, Jan. „Provozně-ekonomické posouzení instalace nové turbíny“. Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2021. http://www.nusl.cz/ntk/nusl-442874.
Der volle Inhalt der QuelleSeidl, Jakub. „Návrh podnikového finančního plánu“. Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2020. http://www.nusl.cz/ntk/nusl-417364.
Der volle Inhalt der QuelleEuhus, Daniel D. „Nucleation in bulk solutions and crystal growth on heat-transfer surfaces during evaporative crystallization of salts composed of NaCO and NaSO“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5401.
Der volle Inhalt der QuelleDruske, Mona-Maria [Verfasser], und Wolfgang [Akademischer Betreuer] Ruck. „The reactions of mixed salts in advanced heat storage systems / Mona-Maria Druske ; Betreuer: Wolfgang Ruck“. Lüneburg : Universitätsbibliothek der Leuphana Universität Lüneburg, 2020. http://d-nb.info/1207542970/34.
Der volle Inhalt der QuelleDruske, Mona-Maria Verfasser], und Wolfgang [Akademischer Betreuer] [Ruck. „The reactions of mixed salts in advanced heat storage systems / Mona-Maria Druske ; Betreuer: Wolfgang Ruck“. Lüneburg : Universitätsbibliothek der Leuphana Universität Lüneburg, 2020. http://d-nb.info/1207542970/34.
Der volle Inhalt der QuelleMyers, Philip D. Jr. „Additives for Heat Transfer Enhancement in High Temperature Thermal Energy Storage Media: Selection and Characterization“. Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5749.
Der volle Inhalt der Quelleau, A. Tromans@chem murdoch edu, und Andrew John Tromans. „Solution Chemistry of some Dicarboxylate Salts of Relevance to the Bayer Process“. Murdoch University, 2001. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040730.140604.
Der volle Inhalt der QuelleBücher zum Thema "Heat sales"
H, Levine Edward, Hrsg. Deep branding on the Internet: Applying heat and pressure online to ensure a lasting brand. Roseville, Calif: Prima venture, 2000.
Den vollen Inhalt der Quelle findenClosing sales and winning the customer's heart. Menlo Park, CA: Crisp Publications, 2000.
Den vollen Inhalt der Quelle findenCorp, Daniel L. "Can't hear thunder". [S.l.]: D.L. Corp, 1986.
Den vollen Inhalt der Quelle findenAbruzzese, John A. The theology of hearts in the writings of St. Francis de Sales. Rome: Institute of Spirituality, Pontifical University of St. Thomas Aquinas, 1985.
Den vollen Inhalt der Quelle findenFire in the heart: Healers, sages, and mystics. New York: Paragon House, 1990.
Den vollen Inhalt der Quelle findenKirvan, John J. Set your heart free: The practical spirituality of Francis de Sales. Notre Dame, Ind: Ave Maria Press, 1997.
Den vollen Inhalt der Quelle findenMitchell, Garry. The heart of the sale: Making the customer's need to buy the key to successful selling. New York, NY: AMACOM, 1991.
Den vollen Inhalt der Quelle findenSales, Soupy. Soupy Sales, did you hear the one about--: The greatest jokes ever told. New York: Collier Books, 1987.
Den vollen Inhalt der Quelle findenStopp, Elisabeth. A man to heal differences: Essays and talks on St. Francis de Sales. Philadelphia, Pa: Saint Joseph's University Press, 1997.
Den vollen Inhalt der Quelle findenYaʻel, Liʼor, Hrsg. The wise heart: Tales and allegories of three contemporary sages. Toronto, ON, Canada: Laitman Kabbalah Publishers, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Heat sales"
Furnham, Adrian. „Targeting sales“. In Head & Heart Management, 189–91. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/9780230598317_72.
Der volle Inhalt der QuellePufahl, Mario. „Interview mit Lars Trautmann, Head of Marketing & Sales Effectiveness bei Boehringer Ingelheim“. In Sales Performance Management, 309–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-05653-7_11.
Der volle Inhalt der QuelleMerk, Michaela. „Luxury Relationship Branding: Heart-Winning Strategies for Brand Managers and their Corporations“. In Luxury Sales Force Management, 34–139. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137347442_3.
Der volle Inhalt der QuelleGuo, Xiaotong, Di Hu, Linpo Yu, Lan Xia und George Z. Chen. „Nanomaterials Enhanced Heat Storage in Molten Salts“. In Energy-Sustainable Advanced Materials, 153–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57492-5_6.
Der volle Inhalt der QuellePeng, Yuxiang, und Ramana G. Reddy. „Melting Point and Heat Capacity of MgCl2+ Mg Salts“. In Advances in Molten Slags, Fluxes, and Salts, 525–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch56.
Der volle Inhalt der QuellePeng, Yuxiang, und Ramana G. Reddy. „Melting Point and Heat Capacity of MgCl2 + Mg Salts“. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, 525–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48769-4_56.
Der volle Inhalt der QuelleYoon, Dae-Woo, Jung-Wook Cho und Seon-Hyo Kim. „Controlling Heat Transfer through Mold Flux Film by Scattering Effects“. In Advances in Molten Slags, Fluxes, and Salts, 485–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch51.
Der volle Inhalt der QuelleNakano, Jinichiro, Jinichiro Nakano, James Bennett und Anna Nakano. „Gaseous Fuel Production Using Waste Slags - Going Beyond Heat Recovery“. In Advances in Molten Slags, Fluxes, and Salts, 627–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch67.
Der volle Inhalt der QuelleAssis, Karina Lara Santos, und P. Chris Pistorius. „Cold-Finger Measurement of Heat Transfer Through Solidified Mold Flux Layers“. In Advances in Molten Slags, Fluxes, and Salts, 307–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch33.
Der volle Inhalt der QuelleJung, Seunghwan, und Debjyoti Banerjee. „Enhancement of Heat Capacity of Nitrate Salts using Mica Nanoparticles“. In Ceramic Engineering and Science Proceedings, 127–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095393.ch12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heat sales"
Dubay, Babita Angeli, Michael Mottley, Ravi Ram und Kendall Mungal. „Utilization of Heat and Centrifuge Technology to Recover Crude for Sales from Slop Oil“. In SPE Trinidad and Tobago Section Energy Resources Conference. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/180906-ms.
Der volle Inhalt der QuelleGhaith, Fadi A., und Ahmed S. Izhar. „Thermal Performance Enhancement of an Industrial Shell and Tube Heat Exchanger“. In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49543.
Der volle Inhalt der QuelleColella, Whitney G., Stephen H. Schneider, Daniel M. Kammen, Aditya Jhunjhunwala und Nigel Teo. „Part II of II: Deployment of MERESS Model—Designing, Controlling, and Installing Stationary Combined Heat and Power (CHP) Fuel Cell Systems (FCS) to Reduce Costs and Greenhouse Gas (GHG) Emissions“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65113.
Der volle Inhalt der QuelleCattolica, Robert, Richard Herz, James Giolitto und Matt Summers. „Economic Analysis of a 3 MW Biomass Gasification Power Plant“. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90374.
Der volle Inhalt der QuelleIrrazabal Bohorquez, Washington Orlando, und Joa˜o Roberto Barbosa. „Functional Analysis and Exergoeconomic Evaluation for the Combined Production of Electromechanical Power and Useful Heat of a Cogeneration Power Plant“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45055.
Der volle Inhalt der QuelleColella, Whitney G., Stephen H. Schneider, Daniel M. Kammen, Aditya Jhunjhunwala und Nigel Teo. „Part I of II: Development of MERESS Model—Developing System Models of Stationary Combined Heat and Power (CHP) Fuel Cell Systems (FCS) for Reduced Costs and Greenhouse Gas (GHG) Emissions“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65112.
Der volle Inhalt der QuelleLittle, Adrienne B., und Srinivas Garimella. „A New Energy Frugal Paradigm for Data Centers“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39442.
Der volle Inhalt der QuelleWu, Yu-ting, Nan Ren, Chong-fang Ma und Tao Wang. „Experimental Study on Thermal Performance of Mixed Nitrate and Carbonate Salts“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23081.
Der volle Inhalt der QuelleLanghoff, Moritz, Robin Roj, Ralf Theiß und Peter Dültgen. „Process Optimization of Local Annealing of SMA Wires for Plagiarism Detection“. In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2257.
Der volle Inhalt der QuelleGan, Yu, und Van P. Carey. „An Exploration of the Effects of Dissolved Ionic Solids on Bubble Merging in Water and Its Impact on the Leidenfrost Transition“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23330.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heat sales"
Mathur, Anoop. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089923.
Der volle Inhalt der QuelleMostafa, A. T. M. G., J. M. Eakman und S. L. Yarbro. Prediction of heat capacities of solid inorganic salts from group contributions. Office of Scientific and Technical Information (OSTI), Januar 1997. http://dx.doi.org/10.2172/426978.
Der volle Inhalt der QuelleAnderson, Mark, Kumar Sridharan, Dane Morgan, Per Peterson, Pattrick Calderoni, Randall Scheele, Andrew Casekka und Bruce McNamara. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling. Office of Scientific and Technical Information (OSTI), Januar 2015. http://dx.doi.org/10.2172/1169921.
Der volle Inhalt der QuelleSridharan, Kumar, Mark Anderson, Todd Allen und Michael Corradini. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1033952.
Der volle Inhalt der QuelleScheele, Randall D., und Andrew M. Casella. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1017120.
Der volle Inhalt der QuelleWallace, Sean, Scott Lux, Constandinos Mitsingas, Irene Andsager und Tapan Patel. Performance testing and modeling of a transpired ventilation preheat solar wall : performance evaluation of facilities at Fort Drum, NY, and Kansas Air National Guard, Topeka, KS. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42000.
Der volle Inhalt der QuelleSavings Bank of New South Wales - Sydney (Head Office) - Mortgage (Investment) Department - Foreclosed Mortgages - Mortgages Securities Sales Ledger (Indexed) - 1894-1913. Reserve Bank of Australia, März 2021. http://dx.doi.org/10.47688/rba_archives_2006/21160.
Der volle Inhalt der Quelle