Zeitschriftenartikel zum Thema „Heat exchangers Fluid dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Heat exchangers Fluid dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Dawood Jumaah, Itimad, Senaa Kh. Ali und Anees A. Khadom. „Evaluation Analysis of Double Coil Heat Exchanger for Heat Transfer Enhancement“. Diyala Journal of Engineering Sciences 14, Nr. 1 (15.03.2021): 96–107. http://dx.doi.org/10.24237/djes.2021.14109.
Der volle Inhalt der QuelleНикулин, Н., und Nikolay Nikulin. „THE STUDY OF HEAT TRANSFER IN INTENSIFIED SHELL AND TUBE DEVICE“. Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, Nr. 4 (25.04.2019): 77–82. http://dx.doi.org/10.34031/article_5cb1e65e6c0d28.53980880.
Der volle Inhalt der QuelleAydin, Ahmet, Halit Yaşar, Tahsin Engin und Ekrem Büyükkaya. „Optimization and CFD analysis of a shell-and-tube heat exchanger with a multi segmental baffle“. Thermal Science, Nr. 00 (2020): 293. http://dx.doi.org/10.2298/tsci200111293a.
Der volle Inhalt der QuelleWalter, Christian, Sebastian Martens, Christian Zander, Carsten Mehring und Ulrich Nieken. „Heat Transfer through Wire Cloth Micro Heat Exchanger“. Energies 13, Nr. 14 (10.07.2020): 3567. http://dx.doi.org/10.3390/en13143567.
Der volle Inhalt der QuelleKamidollayev, Tlegen, Juan Pablo Trelles, Jay Thakkar und Jan Kosny. „Parametric Study of Panel PCM–Air Heat Exchanger Designs“. Energies 15, Nr. 15 (30.07.2022): 5552. http://dx.doi.org/10.3390/en15155552.
Der volle Inhalt der QuelleTrokhaniak, V. I., I. L. Rogovskii, L. L. Titova, P. S. Popyk, O. O. Bannyi und P. H. Luzan. „Computational fluid dynamics investigation of heat-exchangers for various air-cooling systems in poultry houses“. Bulletin of the Karaganda University. "Physics" Series 97, Nr. 1 (30.03.2020): 125–34. http://dx.doi.org/10.31489/2020ph1/125-134.
Der volle Inhalt der QuelleFetuga, Ibrahim Ademola, Olabode Thomas Olakoyejo, Adeola S. Shote, Gbeminiyi Mike Sobamowo, Omotayo Oluwatusin und Joshua Kolawole Gbegudu. „Thermal and Fluid Flow Analysis of Shell-and-Tube Heat Exchangers with Smooth and Dimpled Tubes“. Journal of Advanced Engineering and Computation 6, Nr. 3 (30.09.2022): 233. http://dx.doi.org/10.55579/jaec.202263.378.
Der volle Inhalt der QuelleHughes, J. P., T. E. R. Jones und P. W. James. „Numerical Simulations and Experimental Measurements of the Isothermal Flow in a Model Tubular Heat Exchanger“. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 220, Nr. 2 (01.05.2006): 109–19. http://dx.doi.org/10.1243/095440806x78847.
Der volle Inhalt der QuelleSundén, Bengt. „Computational Fluid Dynamics in Research and Design of Heat Exchangers“. Heat Transfer Engineering 28, Nr. 11 (November 2007): 898–910. http://dx.doi.org/10.1080/01457630701421679.
Der volle Inhalt der QuelleChennu, Ranganayakulu. „Numerical analysis of compact plate-fin heat exchangers for aerospace applications“. International Journal of Numerical Methods for Heat & Fluid Flow 28, Nr. 2 (05.02.2018): 395–412. http://dx.doi.org/10.1108/hff-08-2016-0313.
Der volle Inhalt der QuelleNaqvi, S. M. A., und Qiuwang Wang. „Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles“. Energies 12, Nr. 3 (09.02.2019): 540. http://dx.doi.org/10.3390/en12030540.
Der volle Inhalt der QuelleKaviany, M., und M. Reckker. „Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment“. Journal of Heat Transfer 112, Nr. 1 (01.02.1990): 56–63. http://dx.doi.org/10.1115/1.2910364.
Der volle Inhalt der QuelleÁlvarez Gómez, Pascual, Ismael Rodríguez Maestre, F. Javier González Gallero und J. Daniel Mena Baladés. „The Influence of Outer Weather Conditions on the Modelling of Vertical Ground Heat Exchangers“. Applied Mechanics and Materials 361-363 (August 2013): 276–80. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.276.
Der volle Inhalt der QuelleNurhasanah, Siti, Muhammad Subekti, Moch Nurul Subkhi und Bebeh Wahid Nuryadin. „Optimal tube diameter on heat exchanger shell and tube type with 15 mega watt thermal power using fluent 6.3“. MATEC Web of Conferences 197 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201819702011.
Der volle Inhalt der QuelleLadeinde, Foluso. „Reduced-Order Computational-Fluid-Dynamics-Based Analysis of Aviation Heat Exchangers“. Journal of Thermophysics and Heat Transfer 34, Nr. 4 (Oktober 2020): 696–715. http://dx.doi.org/10.2514/1.t5903.
Der volle Inhalt der QuelleKonchada, Pavan Kumar, Vinay Pv und Varaprasad Bhemuni. „Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach“. Archives of Thermodynamics 37, Nr. 2 (01.06.2016): 3–22. http://dx.doi.org/10.1515/aoter-2016-0010.
Der volle Inhalt der QuelleAlsahil, Muath I., Mowffaq M. Oreijah und Mohamed H. Mohamed. „Quantitative and Qualitative Study of Double-Pipe Heat Exchangers Performance Using Water Based Nanofluids“. Journal of Nanofluids 11, Nr. 6 (01.12.2022): 924–43. http://dx.doi.org/10.1166/jon.2022.1891.
Der volle Inhalt der QuelleShafagh, Ida, Simon Rees, Iñigo Urra Mardaras, Marina Curto Janó und Merche Polo Carbayo. „A Model of a Diaphragm Wall Ground Heat Exchanger“. Energies 13, Nr. 2 (07.01.2020): 300. http://dx.doi.org/10.3390/en13020300.
Der volle Inhalt der QuelleKhanlari, Ataollah, Adnan Sözen und Halil İbrahim Variyenli. „Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid“. International Journal of Numerical Methods for Heat & Fluid Flow 29, Nr. 4 (01.04.2019): 1343–62. http://dx.doi.org/10.1108/hff-05-2018-0191.
Der volle Inhalt der QuelleSong, Su Fang. „Performance Study of Heat Exchangers with Continuous Helical Baffles on Different Inclination Angles“. Advanced Materials Research 655-657 (Januar 2013): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.461.
Der volle Inhalt der QuelleAgarwal, Abhishek. „Modelling & Numerical Investigation of the Effectiveness of Plate Heat Exchanger for Cooling Engine Oil Using ANSYS CFX“. International Journal of Heat and Technology 39, Nr. 2 (30.04.2021): 653–58. http://dx.doi.org/10.18280/ijht.390237.
Der volle Inhalt der QuelleRus, Alexandru, Vlad Martian und Mihai Nagi. „Study of Height Influence of Heat Exchanger Tanks on Overall Pressure Drop“. Applied Mechanics and Materials 659 (Oktober 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.659.446.
Der volle Inhalt der QuellePorter, Michael A., Dennis H. Martens, Thomas Duffy und Sean McGuffie. „High-Temperature Heat Exchanger Tube-Sheet Assembly Investigation With Computational Fluid Dynamics“. Journal of Pressure Vessel Technology 129, Nr. 2 (20.11.2006): 313–15. http://dx.doi.org/10.1115/1.2716436.
Der volle Inhalt der Quellede Souza, Diego Amorim Caetano, Lúben Cabezas Gómez und José Antônio da Silva. „Fluid Dynamic Simulation and Optimization of Compact Heat Exchangers with Louver Fins“. Applied Mechanics and Materials 798 (Oktober 2015): 205–9. http://dx.doi.org/10.4028/www.scientific.net/amm.798.205.
Der volle Inhalt der QuelleAjeeb, Wagd, Monica S. A. Oliveira, Nelson Martins und S. M. Sohel Murshed. „Numerical approach for fluids flow and thermal convection in microchannels“. Journal of Physics: Conference Series 2116, Nr. 1 (01.11.2021): 012049. http://dx.doi.org/10.1088/1742-6596/2116/1/012049.
Der volle Inhalt der QuelleLiu, Liu, und Yingwen Liu. „Numerical study on a thermoacoustic refrigerator with continuous and staggered arrangements“. Thermal Science, Nr. 00 (2022): 25. http://dx.doi.org/10.2298/tsci210901025l.
Der volle Inhalt der Quellevan Driel, Michael R. „Cardioplegia heat exchanger design modelling using computational fluid dynamics“. Perfusion 15, Nr. 6 (Dezember 2000): 541–48. http://dx.doi.org/10.1177/026765910001500611.
Der volle Inhalt der QuelleKhan, Abdullah, Imran Shah, Waheed Gul, Tariq Amin Khan, Yasir Ali und Syed Athar Masood. „Numerical and Experimental Analysis of Shell and Tube Heat Exchanger with Round and Hexagonal Tubes“. Energies 16, Nr. 2 (12.01.2023): 880. http://dx.doi.org/10.3390/en16020880.
Der volle Inhalt der QuelleNavickaitė, Kristina, Michael Penzel, Christian R. H. Bahl und Kurt Engelbrecht. „Performance Assessment of Double Corrugated Tubes in a Tube-In-Shell Heat Exchanger“. Energies 14, Nr. 5 (01.03.2021): 1343. http://dx.doi.org/10.3390/en14051343.
Der volle Inhalt der QuelleJUN, SOOJIN, und VIRENDRA M. PURI. „3D milk-fouling model of plate heat exchangers using computational fluid dynamics“. International Journal of Dairy Technology 58, Nr. 4 (November 2005): 214–24. http://dx.doi.org/10.1111/j.1471-0307.2005.00213.x.
Der volle Inhalt der QuelleMenni, Younes, Houari Ameur, Shao-Wen Yao, Mohammed Amine Amraoui, Mustafa Inc, Giulio Lorenzini und Hijaz Ahmad. „Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels“. Open Physics 19, Nr. 1 (01.01.2021): 51–60. http://dx.doi.org/10.1515/phys-2021-0005.
Der volle Inhalt der QuelleWu, H. L., Y. Gong und X. Zhu. „Air Flow and Heat Transfer in Louver-Fin Round-Tube Heat Exchangers“. Journal of Heat Transfer 129, Nr. 2 (21.05.2006): 200–210. http://dx.doi.org/10.1115/1.2402180.
Der volle Inhalt der QuelleHu, Ping Fang, Zhong Yi Yu, Fei Lei, Na Zhu, Qi Ming Sun und Xu Dong Yuan. „Performance Evaluation of a Vertical U-Tube Ground Heat Exchanger Using a Numerical Simulation Approach“. Advanced Materials Research 724-725 (August 2013): 909–15. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.909.
Der volle Inhalt der QuelleDwivedi, Anil Kumar, und Sarit Kumar Das. „Dynamics of plate heat exchangers subject to flow variations“. International Journal of Heat and Mass Transfer 50, Nr. 13-14 (Juli 2007): 2733–43. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.029.
Der volle Inhalt der QuelleSharma, Shubham, Shalab Sharma, Mandeep Singh, Parampreet Singh, Rasmeet Singh, Sthitapragyan Maharana, Nima Khalilpoor und Alibek Issakhov. „Computational Fluid Dynamics Analysis of Flow Patterns, Pressure Drop, and Heat Transfer Coefficient in Staggered and Inline Shell-Tube Heat Exchangers“. Mathematical Problems in Engineering 2021 (01.06.2021): 1–10. http://dx.doi.org/10.1155/2021/6645128.
Der volle Inhalt der QuelleDirkse, Martijn H., Wilko K. P. van Loon, Tom van der Walle, Sebastiaan L. Speetjens und Gerard P. A. Bot. „A Computational Fluid Dynamics Model for Designing Heat Exchangers based on Natural Convection“. Biosystems Engineering 94, Nr. 3 (Juli 2006): 443–52. http://dx.doi.org/10.1016/j.biosystemseng.2006.04.007.
Der volle Inhalt der QuelleMočnik, Urban, Bogdan Blagojevič und Simon Muhič. „Numerical Analysis with Experimental Validation of Single-Phase Fluid Flow in a Dimple Pattern Heat Exchanger Channel“. Strojniški vestnik – Journal of Mechanical Engineering 66, Nr. 9 (15.09.2020): 544–53. http://dx.doi.org/10.5545/sv-jme.2020.6776.
Der volle Inhalt der QuelleSonjaya, Abeth Novria, Marhaenanto Marhaenanto, Mokhamad Eka Faiq und La Ode M. Firman. „Analisis Perbandingan Jenis Material Penukar Kalor Plat Datar Aliran Silang Untuk Proses Pengeringan Kayu“. Jurnal Teknologi 9, Nr. 1 (30.11.2021): 60–71. http://dx.doi.org/10.31479/jtek.v9i1.117.
Der volle Inhalt der QuelleGizatullin, R. R., S. N. Peshcherenko und N. A. Lykova. „Simulation of oil cooling of a submersible motor using a heat exchanger“. Вестник Пермского университета. Физика, Nr. 1 (2021): 69–75. http://dx.doi.org/10.17072/1994-3598-2021-1-69-75.
Der volle Inhalt der QuelleMikielewicz, Jarosław, und Dariusz Mikielewicz. „Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers“. Archives of Thermodynamics 33, Nr. 1 (01.08.2012): 41–66. http://dx.doi.org/10.2478/v10173-012-0002-3.
Der volle Inhalt der QuelleYu, Qin, Chai, Huang und Liu. „The Effect of Compressible Flow on Heat Transfer Performance of Heat Exchanger by Computational Fluid Dynamics (CFD) Simulation“. Entropy 21, Nr. 9 (25.08.2019): 829. http://dx.doi.org/10.3390/e21090829.
Der volle Inhalt der QuelleSalmi, Mohamed, Benameur Afif, Ali Akgul, Rabab Jarrar, Hussein Shanak, Younes Menni, Hijaz Ahmad und Jihad Asad. „Turbulent flows around rectangular and triangular turbulators in baffled channels a computational analysis“. Thermal Science 26, Spec. issue 1 (2022): 191–99. http://dx.doi.org/10.2298/tsci22s1191s.
Der volle Inhalt der QuelleBerce, Jure, Matevž Zupančič, Matic Može und Iztok Golobič. „A Review of Crystallization Fouling in Heat Exchangers“. Processes 9, Nr. 8 (01.08.2021): 1356. http://dx.doi.org/10.3390/pr9081356.
Der volle Inhalt der QuelleHuang, Bo Wun, Jung Ge Tseng und Jao Hwa Kuang. „Vibration of a Tube with the Axial Loads and Fluid“. Applied Mechanics and Materials 275-277 (Januar 2013): 925–29. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.925.
Der volle Inhalt der QuelleYasuo, A., und M. P. Paidoussis. „Flow-Induced Instability of Heat-Exchanger Tubes due to Axial Flow in a Diffuser-Shaped, Loose Intermediate Support“. Journal of Pressure Vessel Technology 111, Nr. 4 (01.11.1989): 428–34. http://dx.doi.org/10.1115/1.3265700.
Der volle Inhalt der QuelleChen, Tang, und Wei-zong Wang. „Modeling of combustion and hydrodynamics for a coal-fired supercritical boiler with double-reheat cycle“. International Journal of Numerical Methods for Heat & Fluid Flow 30, Nr. 4 (23.02.2019): 1661–75. http://dx.doi.org/10.1108/hff-08-2018-0456.
Der volle Inhalt der QuelleÜnverdi, Murat, und Hasan Küçük. „Performance comparison of plate heat exchangers designed using Taguchi method and Computational Fluid Dynamics“. Pamukkale University Journal of Engineering Sciences 25, Nr. 4 (2019): 373–86. http://dx.doi.org/10.5505/pajes.2019.35493.
Der volle Inhalt der QuelleÜnverdi, Murat, und Hasan Küçük. „Performance comparison of plate heat exchangers designed using Taguchi method and Computational Fluid Dynamics“. Pamukkale University Journal of Engineering Sciences 25, Nr. 4 (2019): 373–86. http://dx.doi.org/10.5505/pajes.2018.35493.
Der volle Inhalt der QuelleSakib, Shadman, und Abdullah Al-Faruk. „Flow and Thermal Characteristics Analysis of Plate–Finned Tube and Annular–Finned Tube Heat Exchangers fo In–Line and Staggered Configurations“. Mechanics and Mechanical Engineering 22, Nr. 4 (02.09.2020): 1407–18. http://dx.doi.org/10.2478/mme-2018-0110.
Der volle Inhalt der QuelleMuthusamy, P., und Palanisamy Senthil Kumar. „Waste Heat Recovery Using Matrix Heat Exchanger from the Exhaust of an Automobile Engine for Heating Car’s Passenger Cabin“. Advanced Materials Research 984-985 (Juli 2014): 1132–37. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1132.
Der volle Inhalt der Quelle