Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heat exchangers Fluid dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heat exchangers Fluid dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heat exchangers Fluid dynamics"
Dawood Jumaah, Itimad, Senaa Kh. Ali und Anees A. Khadom. „Evaluation Analysis of Double Coil Heat Exchanger for Heat Transfer Enhancement“. Diyala Journal of Engineering Sciences 14, Nr. 1 (15.03.2021): 96–107. http://dx.doi.org/10.24237/djes.2021.14109.
Der volle Inhalt der QuelleНикулин, Н., und Nikolay Nikulin. „THE STUDY OF HEAT TRANSFER IN INTENSIFIED SHELL AND TUBE DEVICE“. Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, Nr. 4 (25.04.2019): 77–82. http://dx.doi.org/10.34031/article_5cb1e65e6c0d28.53980880.
Der volle Inhalt der QuelleAydin, Ahmet, Halit Yaşar, Tahsin Engin und Ekrem Büyükkaya. „Optimization and CFD analysis of a shell-and-tube heat exchanger with a multi segmental baffle“. Thermal Science, Nr. 00 (2020): 293. http://dx.doi.org/10.2298/tsci200111293a.
Der volle Inhalt der QuelleWalter, Christian, Sebastian Martens, Christian Zander, Carsten Mehring und Ulrich Nieken. „Heat Transfer through Wire Cloth Micro Heat Exchanger“. Energies 13, Nr. 14 (10.07.2020): 3567. http://dx.doi.org/10.3390/en13143567.
Der volle Inhalt der QuelleKamidollayev, Tlegen, Juan Pablo Trelles, Jay Thakkar und Jan Kosny. „Parametric Study of Panel PCM–Air Heat Exchanger Designs“. Energies 15, Nr. 15 (30.07.2022): 5552. http://dx.doi.org/10.3390/en15155552.
Der volle Inhalt der QuelleTrokhaniak, V. I., I. L. Rogovskii, L. L. Titova, P. S. Popyk, O. O. Bannyi und P. H. Luzan. „Computational fluid dynamics investigation of heat-exchangers for various air-cooling systems in poultry houses“. Bulletin of the Karaganda University. "Physics" Series 97, Nr. 1 (30.03.2020): 125–34. http://dx.doi.org/10.31489/2020ph1/125-134.
Der volle Inhalt der QuelleFetuga, Ibrahim Ademola, Olabode Thomas Olakoyejo, Adeola S. Shote, Gbeminiyi Mike Sobamowo, Omotayo Oluwatusin und Joshua Kolawole Gbegudu. „Thermal and Fluid Flow Analysis of Shell-and-Tube Heat Exchangers with Smooth and Dimpled Tubes“. Journal of Advanced Engineering and Computation 6, Nr. 3 (30.09.2022): 233. http://dx.doi.org/10.55579/jaec.202263.378.
Der volle Inhalt der QuelleHughes, J. P., T. E. R. Jones und P. W. James. „Numerical Simulations and Experimental Measurements of the Isothermal Flow in a Model Tubular Heat Exchanger“. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 220, Nr. 2 (01.05.2006): 109–19. http://dx.doi.org/10.1243/095440806x78847.
Der volle Inhalt der QuelleSundén, Bengt. „Computational Fluid Dynamics in Research and Design of Heat Exchangers“. Heat Transfer Engineering 28, Nr. 11 (November 2007): 898–910. http://dx.doi.org/10.1080/01457630701421679.
Der volle Inhalt der QuelleChennu, Ranganayakulu. „Numerical analysis of compact plate-fin heat exchangers for aerospace applications“. International Journal of Numerical Methods for Heat & Fluid Flow 28, Nr. 2 (05.02.2018): 395–412. http://dx.doi.org/10.1108/hff-08-2016-0313.
Der volle Inhalt der QuelleDissertationen zum Thema "Heat exchangers Fluid dynamics"
Mavi, Anele. „Computational analysis of viscoelastic fluid dynamics with applications to heat exchangers“. Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30078.
Der volle Inhalt der QuellePiper, Mark [Verfasser]. „Analysis of fluid dynamics and heat transfer in pillow-plate heat exchangers / Mark Piper“. Paderborn : Universitätsbibliothek, 2018. http://d-nb.info/1168721474/34.
Der volle Inhalt der QuelleBruzzano, Marco Anthony. „Investigation of a self compensating flow distribution system“. Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/19284.
Der volle Inhalt der QuelleChen, Li-Kwen. „Unsteady flow and heat transfer in periodic complex geometries for the transitional flow regime“. Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Chen_09007dcc804bed71.pdf.
Der volle Inhalt der QuelleVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 12, 2008) Includes bibliographical references.
Walker, Patrick Gareth Chemical Engineering & Industrial Chemistry UNSW. „CFD modeling of heat exchange fouling“. Awarded by:University of New South Wales. Chemical Engineering & Industrial Chemistry, 2005. http://handle.unsw.edu.au/1959.4/22385.
Der volle Inhalt der QuelleOzden, Ender. „Detailed Design Of Shell-and-tube Heat Exchangers Using Cfd“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608752/index.pdf.
Der volle Inhalt der QuellePeronski, Lukasz. „Application of computational fluid dynamics in the design of heat exchangers for domestic central heating boilers“. Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612612.
Der volle Inhalt der QuelleVaitekunas, David A. „A generic dynamic model for crossflow heat exchangers with one fluid mixed /“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59591.
Der volle Inhalt der QuelleThe solution algorithms are presented in two forms: one-way dependence and two-way dependence: for the constant and variable property version of the model, respectively. Variable time step algorithms are also developed to predict the optimal time step for the finite difference solution. The first one uses a first order predictor method and the second one uses a combined first/second order predictor method.
Finally, the generic model is configured to model the economizer and tubular air preheater of an existing boiler. Steady-state tests validate the numerical solution against available theoretical relations and transient tests investigate the parameters in the solution and time step algorithms to determine their effect on simulation speed and accuracy.
Dimas, Sotirios. „A CFD analysis of the performance of pin-fin laminar flow micro/meso scale heat exchangers“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2005. http://bosun.nps.edu/uhtbin/hyperion-image.exe/05Sep%5FDimas.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Gopinath, Ashok ; Sinibaldi, Jose O. "September 2005." Description based on title screen as viewed on March 12, 2008. Includes bibliographical references (p. 85-87). Also available in print.
Taylor, Creed. „Measurement of Finned-Tube Heat Exchanger Performance“. Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4890.
Der volle Inhalt der QuelleBücher zum Thema "Heat exchangers Fluid dynamics"
Roetzel, Wilfried. Dynamic behaviour of heat exchangers. Southampton: WIT Press/Computational Mechanics Publications, 1999.
Den vollen Inhalt der Quelle findenA, Gerliga V., Hrsg. Nestabilʹnostʹ potoka teplonositeli͡a︡ v ėlementakh ėnergooborudovanii͡a︡. Sankt-Peterburg: "Nauka", 1994.
Den vollen Inhalt der Quelle findenNiezgoda-Żelasko, Beata. Wymiana ciepła i opory przepływu zawiesiny lodowej w przewodach. Kraków: Politechnika Krakowska, 2006.
Den vollen Inhalt der Quelle findenKlaczak, Adam. Interpretacja wpływu drgań wymuszonych i samowzbudnych na wymianę ciepła. Kraków: Politechnika Krakowska, 1994.
Den vollen Inhalt der Quelle findenAmerican Society of Mechanical Engineers. Winter Meeting. Thermal hydraulics of advanced heat exchangers: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990. New York, N.Y: ASME, 1990.
Den vollen Inhalt der Quelle findenHeat transfer of a cylinder in crossflow. Washington: Hemisphere Pub., 1985.
Den vollen Inhalt der Quelle findenZhukauskas, A. A. Teplootdacha poperechno obtekaemykh puchkov trub. Vilʹni͡u︡s: Mokslas, 1986.
Den vollen Inhalt der Quelle findenNational Heat Transfer Conference (24th 1987 Pittsburgh, Pa.). Maldistribution of flow and its effect on heat exchanger performance: Presented at the 24th National Heat Transfer Conference and Exhibition, Pittsburgh, Pennsylvania, August 9-12, 1987. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1987.
Den vollen Inhalt der Quelle findenPettigrew, M. J. Flow-induced vibration specifications for steam generators and liquid heat exchangers. Chalk River, Ont: Chalk River Laboratories, 1995.
Den vollen Inhalt der Quelle findenMikielewicz, Dariusz. Wrzenie i kondensacja w przepływie w kanałach i mikrokanałach. Gdańsk: Wydawn. Politechniki Gdańskiej, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Heat exchangers Fluid dynamics"
Lecheler, Stefan. „Example Double Tube Heat Exchanger“. In Computational Fluid Dynamics, 173–93. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38453-1_9.
Der volle Inhalt der QuelleFriedel, L. „Fluid Dynamic Design of Heat Exchanger Safety Devices“. In Two-Phase Flow Heat Exchangers, 1031–91. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_33.
Der volle Inhalt der QuelleSundén, Bengt. „Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications“. In Applied Optical Measurements, 159–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58496-1_10.
Der volle Inhalt der QuelleGora, Vikash, und M. Mohan Jagadeesh Kumar. „Design Fabrication and Testing of a Heat Exchanger in a Solar Thermal Energy Conversion System“. In Advances in Fluid Dynamics, 537–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4308-1_42.
Der volle Inhalt der QuelleHuang, Yuan Mao. „Study of Unsteady Flow in the Heat Exchanger by the Method of Characteristics“. In Recent Advances in Computational Fluid Dynamics, 454–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83733-3_18.
Der volle Inhalt der QuelleReddy, Rajidi Shashidhar, Abhay Gupta und Satyajit Panda. „Nonlinear Dynamics of Cross-flow Heat Exchanger Tube Conveying Fluid“. In NODYCON Conference Proceedings Series, 3–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81162-4_1.
Der volle Inhalt der QuelleSethuramalingam, Ramamoorthy, und Abhishek Asthana. „Design Improvement of Water-Cooled Data Centres Using Computational Fluid Dynamics“. In Springer Proceedings in Energy, 105–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_14.
Der volle Inhalt der QuelleNandagopal, PE, Nuggenhalli S. „Heat Exchangers“. In Fluid and Thermal Sciences, 247–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93940-3_12.
Der volle Inhalt der QuelleRodríguez-Vázquez, M., I. Hernández-Pérez, J. Xamán, Y. Chávez und F. Noh-Pat. „Computational Fluid Dynamics for Thermal Evaluation of Earth-to-Air Heat Exchanger for Different Climates of Mexico“. In CFD Techniques and Thermo-Mechanics Applications, 33–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70945-1_3.
Der volle Inhalt der QuelleMerz, J. „Selected Fluid Phenomena in Water/Steam“. In Two-Phase Flow Heat Exchangers, 619–29. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heat exchangers Fluid dynamics"
COUSINS, A. „Response of laser heat exchangers to unsteady spatially-varying input“. In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1507.
Der volle Inhalt der QuelleAbeykoon, Chamil. „Modelling of Heat Exchangers with Computational Fluid Dynamics“. In 8th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'21). Avestia Publishing, 2021. http://dx.doi.org/10.11159/ffhmt21.127.
Der volle Inhalt der QuelleAntao, Dion Savio, und Bakhtier Farouk. „Computational Fluid Dynamics Simulations of an Inertance Type Pulse Tube Refrigerator“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39099.
Der volle Inhalt der QuelleSoojin Jun und V. M. Puri. „3D Milk Fouling Model of Plate Heat Exchangers using Computational Fluid Dynamics“. In 2005 Tampa, FL July 17-20, 2005. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2005. http://dx.doi.org/10.13031/2013.19600.
Der volle Inhalt der QuelleThompson, Willis H., Srinath V. Ekkad, C. Guney Olgun und Joseph Wheeler. „Numerical Modeling of Fluid Flow and Thermal Behavior in Geothermal Heat Exchangers“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65098.
Der volle Inhalt der QuellePatterson, Michael K., Xiaojin Wei und Yogendra Joshi. „Use of Computational Fluid Dynamics in the Design and Optimization of Microchannel Heat Exchangers for Microelectronics Cooling“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72647.
Der volle Inhalt der QuelleGao, Tianyi, Bahgat Sammakia, James Geer, Milnes David und Roger Schmidt. „Experimentally Verified Transient Models of Data Center Crossflow Heat Exchangers“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36022.
Der volle Inhalt der QuelleWang, Aihua, Samir F. Moujaes, Yitung Chen und Valery Ponyavin. „Experimental and Numerical Analyses of Friction Factors in Offset Strip Fin Heat Exchangers“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37482.
Der volle Inhalt der QuelleRobb, K., M. Delgado, T. Howard und N. Goth. „Molten Salt Air-Cooled Heat Exchanger Fluid Dynamics“. In 2020 ANS Virtual Winter Meeting. AMNS, 2020. http://dx.doi.org/10.13182/t123-33521.
Der volle Inhalt der QuelleNagar, R. K., J. P. Meyer, Md MahbubAlam und G. Spedding. „Fluid Dynamics Around a Dimpled Pin-Fin“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63427.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heat exchangers Fluid dynamics"
Rodriguez, Salvador. Computational Fluid Dynamics and Heat Transfer Modeling of a Dimpled Heat Exchanger. Office of Scientific and Technical Information (OSTI), Oktober 2022. http://dx.doi.org/10.2172/1893993.
Der volle Inhalt der QuelleUvan Catton, Vijay K. Dhir, Deepanjan Mitra, Omar Alquaddoomi und Pierangelo Adinolfi. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/827838.
Der volle Inhalt der QuelleCatton, Ivan, Vijay K. Dhir, O. S. Alquaddoomi, Deepanjan Mitra und Pierangelo Adinolfi. Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers. Office of Scientific and Technical Information (OSTI), März 2004. http://dx.doi.org/10.2172/822365.
Der volle Inhalt der QuelleBlackwell, B. F., R. J. Cochran, R. E. Hogan, P. A. Sackinger und P. R. Schunk. Moving/deforming mesh techniques for computational fluid dynamics and heat transfer. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/419077.
Der volle Inhalt der QuelleAbadie, Marc O., Elizabeth U. Finlayson und Ashok J. Gadgil. Infiltration heat recovery in building walls: Computational fluid dynamics investigations results. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/803859.
Der volle Inhalt der QuellePanicker, Nithin, Marco Delchini, Thomas Sambor und Adrian Sabau. COMPUTATIONAL FLUID DYNAMICS SIMULATIONS TO PREDICT OXIDATION IN HEAT RECOVERY STEAM GENERATOR TUBES. Office of Scientific and Technical Information (OSTI), März 2022. http://dx.doi.org/10.2172/1888933.
Der volle Inhalt der QuelleTzanos, C. P., und B. Dionne. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry. Office of Scientific and Technical Information (OSTI), Mai 2011. http://dx.doi.org/10.2172/1018507.
Der volle Inhalt der QuelleRobert E. Spall, Barton Smith und Thomas Hauser. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems. Office of Scientific and Technical Information (OSTI), Dezember 2008. http://dx.doi.org/10.2172/944056.
Der volle Inhalt der Quelle