Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heat“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heat" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heat"
Dukenik, David Bared, Deborah Soong, Frank Scarpa, Julia Anderson, Hua Li, Viji Udayakuma, Justin M. Watts et al. „Distinct SF3B1 Allele HEAT Repeat Location Is Associated with Co-Occurring Mutation Patterns in MDS“. Blood 142, Supplement 1 (28.11.2023): 3242. http://dx.doi.org/10.1182/blood-2023-181191.
Der volle Inhalt der QuelleGurney, Shae C., Katherine S. Christison, Tyler Stenersen und Charles L. Dumke. „Effect of uncompensable heat from the wildland firefighter helmet“. International Journal of Wildland Fire 30, Nr. 12 (2021): 990. http://dx.doi.org/10.1071/wf20181.
Der volle Inhalt der QuelleChoi, Byung-Hui, und Chang-Oh Kim. „A Study on the Numerical Analysis of Heat Sink for Radiant Heat of Automotive LED Head Lamp“. Journal of the Korea Academia-Industrial cooperation Society 13, Nr. 10 (31.10.2012): 4398–404. http://dx.doi.org/10.5762/kais.2012.13.10.4398.
Der volle Inhalt der Quellevan der Laarse, Willem J. „Heart heat separation“. Journal of Physiology 595, Nr. 14 (16.06.2017): 4579–80. http://dx.doi.org/10.1113/jp274564.
Der volle Inhalt der QuelleTojiboyev, Boburjon, und Maftuna Mullajonova. „REASONABLE USE OF HEAT AND HEAT CONDUCTIVITY PROPERTIES OF HEAT PRESERVING COATINGS“. International Journal of Advance Scientific Research 4, Nr. 3 (01.03.2024): 96–101. http://dx.doi.org/10.37547/ijasr-04-03-19.
Der volle Inhalt der QuelleAhmad, Mateen, Waseem Saeed und Khaqan Javed. „Temperature Distribution Analysis along the Length of Floating Head Multi Stream Heat Exchanger“. International Journal of Chemical Engineering and Applications 12, Nr. 3 (September 2021): 17–21. http://dx.doi.org/10.18178/ijcea.2021.12.3.790.
Der volle Inhalt der QuelleVoelker, R. „Heat and Heart Attack“. JAMA: The Journal of the American Medical Association 281, Nr. 18 (12.05.1999): 1689—c—1689. http://dx.doi.org/10.1001/jama.281.18.1689-c.
Der volle Inhalt der QuelleVoelker, Rebecca. „Heat and Heart Attack“. JAMA 281, Nr. 18 (12.05.1999): 1689. http://dx.doi.org/10.1001/jama.281.18.1689-jwm90003-4-1.
Der volle Inhalt der QuelleDesai, Yash, Haitham Khraishah und Barrak Alahmad. „Heat and the Heart“. Yale Journal of Biology and Medicine 96, Nr. 2 (30.06.2023): 197–203. http://dx.doi.org/10.59249/hgal4894.
Der volle Inhalt der QuelleNelson, Michael D., Luis A. Altamirano-Diaz, Stewart R. Petersen, Darren S. DeLorey, Michael K. Stickland, Richard B. Thompson und Mark J. Haykowsky. „Left ventricular systolic and diastolic function during tilt-table positioning and passive heat stress in humans“. American Journal of Physiology-Heart and Circulatory Physiology 301, Nr. 2 (August 2011): H599—H608. http://dx.doi.org/10.1152/ajpheart.00127.2011.
Der volle Inhalt der QuelleDissertationen zum Thema "Heat"
Dellorusso, Paul Robert. „Electrohydrodynamic heat transfer enhancement for a latent heat storage heat exchanger“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0027/MQ31562.pdf.
Der volle Inhalt der QuelleSolder, Jeffery. „Heat“. Digital Commons at Loyola Marymount University and Loyola Law School, 1986. https://digitalcommons.lmu.edu/etd/853.
Der volle Inhalt der QuelleForinash, David Michael. „Novel air-coupled heat exchangers for waste heat-driven absorption heat pumps“. Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53897.
Der volle Inhalt der QuelleGrundén, Emma, und Max Grischek. „Testing the Heat Transfer of a Drain Water Heat Recovery Heat Exchanger“. Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190188.
Der volle Inhalt der QuelleDenna studie undersöker den ökade termiska resistansen i avloppsrör på grund av beläggningar. Idag lägg stor vikt vid bra isolering och energieffektiv utrustning i nybyggda hus, vilket även sätter press på värmeåtervinning av avloppsvatten. Värmeåtervinningen av avloppsvatten är mindre viktig i äldre hus, då den relativa värmeförlusten av avloppsvatten är lägre än i nybyggda hus, men bör likväl tas i akt vid utvärderingen av värmeanvändning. I ett svenskt flerfamiljshus byggt före 1940 stod värmeförlusten på grund av varmt avloppsvatten för 17 % av den totala värmeförlusten (Ekelin et al., 2006). Den genomsnittliga temperaturen för svartvatten ligger på 23 °C till 26 °C (Seybold & Brunk, 2013), varav delar av värmen kan återvinnas i värmeväxlare. Detta bidrar till att det kalla ingående vattnet till värmepumpen förvärms av värmen från avloppsvattnet. Beroende på system och material kan 30 % till 75 % av värmen från avloppsvatten återvinnas (Zaloum et al., 2007b). Ett hot mot prestandan av värmeväxlare är att beläggning formas på de värmeöverförande ytorna i värmeväxlaren. Detta bidrar till en ökad termisk resistans och kan vara mycket kostsam på grund av minskning av värmeöverföring och nödvändig rengöring av anordningen. För att undersöka omfattningen av den ökade termiska resistansen utfördes en rad experiment i en klimatkammare på Brinellvägen 66. En jämförande metod användes där ett aluminiumrör, som tidigare installerats i avloppssystemet från herrarnas toalett i korridoren på Brinellvägen 64B, jämfördes med ett identiskt rör av samma tillverkare. Rören var tätade och fyllda med 20-gradigt kranvatten. Termoelement användes för att, över tid, mäta minskningen av vattentemperaturen i rören. Temperaturskillnaden användes för att beskriva skillnaden i termisk resistans genom att utföra kurvanpassning och tillämpa Lumped Capacitance Method. Skillnaden i termisk resistans mellan de båda rören antogs vara lika med beläggningens motstånd för värmeöverföring. Två huvudsakliga resultat kom av studien. Det första var att beläggning bidrar till ökad termisk resistans av aluminiumrör. Den andra var att korrosion tillsammans med andra externa faktorer orsakar en märkbar minskning av rörens termiska resistans. Totalt sett orsakade beläggningen tillsammans med korrosion en minskning av 14 % av den termiska resistansen i provröret, jämfört med den termiska resistansen vid installationstillfället. Vidare låg minskningen i termisk resistans på grund av korrosion i teströret på 44 % jämfört med den termiska resistansen vid installationstillfället och den genomsnittliga termiska resistansen av det rengjorda teströret låg på 51 % lägre än den genomsnittliga resistansen av teströret innan rengöring. Den beräknade resistansen för ett 0.81 mm tjockt lager av beläggning var 0.03068 m2K/W.
Razavinia, Nasimalsadat. „Waste heat recovery with heat pipe technology“. Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94983.
Der volle Inhalt der QuelleL'énergie d'haut grade de nos jours est produite principalement à base de combustion d'hydrocarbure et les réserves de cette énergie deviennent de plus en plus rare, mais certaines énergies alternatives connues gagnent des forces parmi les marchés incluant les sources d'énergie renouvelables et recyclées. Les usines pyrométallurgiques sont des consommateurs significatifs d'énergie d'haut grade. Ces procédés industriels relâches un montant important de chaleurs (perte) à l'environnement sans aucune récupération. Le but du projet est de concentrer, capturer et convertir cette chaleur résiduelle de basse qualité en énergie valable. Par contre, l'objectif principal du projet comme tel est de développer et de perfectionner un caloduc capable d'extraire cette chaleur parvenant des gaz effluents. Le point d'ébullition d'une substance (vapeur) est utilisé comme moyen de concentrer l'énergie contenu dans les effluents avec la technologie des caloducs. Pour maximiser les gains énergétiques, la conception de ce caloduc en particulier utilise des canaux de retour indépendant ainsi qu'un modificateur de débit dans l'évaporateur, lui permettant d'extraire un niveau supérieur de chaleur. Pendant les essais lors du projet, les éléments limitants des systèmes de caloducs ont été identifiés. Les configurations du système ont été ajustées et modifiés dans la phase expérimentale d'essai pour surmonter ces limitations et maximiser l'extraction de chaleur.
Webber, Helen. „Compact heat exchanger heat transfer coefficient enhancement“. Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540881.
Der volle Inhalt der QuelleRiegler, Robert L. „Heat transfer optimization of grooved heat pipes /“. free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1422959.
Der volle Inhalt der QuelleDa, Riva Enrico. „Two-phase Heat Transfer in Minichannel Heat Exchangers: Heat Pump Applications, Design, Modelling“. Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426130.
Der volle Inhalt der QuelleLa riduzione della carica di refrigerante nelle applicazioni di condizionamento e riscaldamento è uno dei vincoli di progetto principali quando vengono utilizzati, per motivi di carattere ambientale, refrigeranti naturali come idrocarburi ed ammoniaca. Alcune applicazioni dei minicanali per la minimizzazione della carica nelle pompe di calore vengono presentate e discusse nella presente tesi. Viene presentato il progetto di un condensatore, un evaporatore ed uno scambiatore di calore rigenerativo innovativi. Questi componenti sono degli scambiatori di calore a fascio tubiero utilizzanti minicali del diametro di 2 mm e progettati per l’uso con propano. Delle procedure di calcolo basate su di correlazioni disponibili in letteratura ed un modello semplificato del processo di scambio termico sono state utilizzate per il progetto. Le prestazioni sperimentali degli scambiatori con R22 e propano vengono riportate e confrontate con le stime fornite dalle procedure di calcolo. Gli scambiatori di calore sono stati installati in una pompa di calore della capacità termica di 100 kW utilizzante propano come fluido frigorigeno. Nell’impianto della pompa di calore, destinata a test di laboratorio, sono stati installati anche un condensatore ed un evaporatore a piastre convenzionali. In questo modo è stato possibile confrontare diverse configurazioni al fine di quantificare in via sperimentale i vantaggi apportati dall’utilizzo degli scambiatori a minicanali, in termini sia di prestazioni energetiche, sia di carica di propano richiesta. In particolare, le prestazioni delle configurazioni utilizzanti il condensatore a minicanali vengono confrontate con quelle delle configurazioni utilizzanti lo scambiatore a piastre, e l’influenza sulle prestazioni energetiche dello scambiatore rigenerativo viene misurata e discussa. Vengono inoltre riportati dati sperimentali relativi all’efficienza con propano del compressore semiermetico installato nella pompa di calore. Oltre a correlazioni empiriche in grado di stimare le prestazioni termiche globali, il progetto e l’ottimizzazione di scambiatori di calore richiede una più approfondita conoscenza del deflusso e dello scambio termico all’interno di minicanali. Vengono presentate in questa tesi delle simulazioni di termofluidodinamica computazionale tramite l’innovativo metodo VOF (Volume Of Fluid) in grado di simulare direttamente deflussi multifase senza la necessità di utilizzare correlazioni empiriche per la modellazione dell’interazione tra le fasi. Al fine di validare l’efficacia di questo metodo nel calcolare il moto dell’interfaccia gas-liquido, il quale è un aspetto cruciale nello scambio termico bifase, sono state in un primo momento eseguite delle simulazioni del regime di deflusso ”churn flow” per una miscela aria-acqua nel caso di un tubo liscio verticale adiabatico, a differenti valori di diametro del tubo e di velocità superficiale delle due fasi. I risultati sono stati confrontati con visualizzazioni sperimentali ed un modello teorico semplificato del processo di levitazione delle onde è stato sviluppato ed utilizzato per commentare i risultati numerici. Le simulazioni con il metodo VOF sono state in un secondo momento estese allo studio della condensazione di R134a all’interno di un minicanale del diametro di 1 mm. Vengono riportati risultati computazionali relativi all’evoluzione dell’interfaccia vapore-liquido e dei coefficienti di scambio termico lungo il minicanale.
Meyer, Meyer. „Development of a range of air-to-air heat pipe heat recovery heat exchangers“. Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16389.
Der volle Inhalt der QuelleENGLISH ABSTRACT: As the demand for less expensive energy is increasing world-wide, energy conservation is becoming a more-and-more important economic consideration. In light of this, means to recover energy from waste fluid streams is also becoming more-and-more important. An efficient and cost effective means of conserving energy is to recover heat from a low temperature waste fluid stream and use this heat to preheat another process stream. Heat pipe heat exchangers (HPHEs) are devices capable of cost effectively salvaging wasted energy in this way. HPHEs are liquid-coupled indirect transfer type heat exchangers except that the HPHE employs heat pipes or thermosyphons as the major heat transfer mechanism from the high temperature to the low-temperature fluid. The primary advantage of using a HPHE is that it does not require an external pump to circulate the coupling fluid. The hot and cold streams can also be completely isolated preventing cross-contamination of the fluids. In addition, the HPHE has no moving parts. In this thesis, the development of a range of air-to-air HPHEs is investigated. Such an investigation involved the theoretical modelling of HPHEs such that a demonstration unit could be designed, installed in a practical industrial application and then evaluated by considering various financial aspects such as initial costs, running costs and energy savings. To develop the HPHE theoretical model, inside heat transfer coefficients for the evaporator and condenser sections of thermosyphons were investigated with R134a and Butane as two separate working fluids. The experiments on the thermosyphons were undertaken at vertical and at an inclination angle of 45° to the horizontal. Different diameters were considered and evaporator to condenser length ratios kept constant. The results showed that R134a provided for larger heat transfer rates than the Butane operated thermosyphons for similar temperature differences despite the fact that the latent heat of vaporization for Butane is higher than that of R134a. As an example, a R134a charged thermosyphon yielded heat transfer rates in the region of 1160 W whilst the same thermosyphon charged with Butane yielded heat transfer rates in the region of 730 W at 23 °C . Results also showed that higher heat transfer rates were possible when the thermosyphons operated at 45°. Typically, for a thermosyphon with a diameter of 31.9 mm and an evaporator to condenser length ratio of 0.24, an increase in the heat transfer rate of 24 % could be achieved. Theoretical inside heat transfer coefficients were also formulated which were found to correlate reasonably well with most proposed correlations. However, an understanding of the detailed two-phase flow and heat transfer behaviour of the working fluid inside thermosyphons is difficult to model. Correlations proposing this behaviour were formulated and include the use of R134a and Butane as the working fluids. The correlations were formulated from thermosyphons of diameters of 14.99 mm, 17.272 mm, 22.225 mm and 31.9 mm. The evaporator to condenser length ratio for the 31.9 mm diameter thermosyphon was 0.24 whilst the other thermosyphons had ratios of 1. The heat fluxes ranged from 1800-43500 W/m2. The following theoretical inside heat transfer coefficients were proposed for vertical and inclined operations (READ CORRECT FORMULA IN FULL TEXT ABSTRACT) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ The theoretically modelled demonstration HPHE was installed into an existing air drier system. Heat recoveries of approximately 8.8 kW could be recovered for the hot waste stream with a hot air mass flow rate of 0.55 kg/s at an inlet temperature of 51.64 °C and outlet temperature of 35.9 °C in an environment of 20 °C. Based on this recovery, energy savings of 32.18 % could be achieved and a payback period for the HPHE was calculated in the region of 3.3 years. It is recommended that not withstanding the accuracies of roughly 25 % achieved by the theoretically predicted correlations to that of the experimental work, performance parameters such as the liquid fill charge ratios, the evaporator to condenser length ratios and the orientation angles should be further investigated.
AFRIKAANSE OPSOMMING: As gevolg van die groeiende aanvraag na goedkoper energie, word die behoud van energie ‘n al hoe belangriker ekonomiese oorweging. Dus word die maniere om energie te herwin van afval-vloeierstrome al hoe meer intensief ondersoek. Een effektiewe manier om energie te herwin, is om die lae-temperatuur-afval-vloeierstroom (wat sou verlore gaan) se hitte te gebruik om ‘n ander vloeierstroom mee te verhit. Hier dien dit dan as voorverhitting van die ander, kouer, vloeierstroom. Hittepyp hitteruilers (HPHR’s) is laekoste toestelle wat gebruik kan word vir hierdie doel. ‘n HPHR is ‘n vloeistof-gekoppelde indirekte-oordrag hitteruiler, behalwe vir die feit dat dié hitteruiler gebruik maak van hittepype (of hittebuise) wat die grootste deel van sy hitteoordragsmeganisme uitmaak. Die primêre voordele van ‘n HPHR is dat dit geen bewegende dele het nie, die koue- en warmstrome totaal geïsoleer bly van mekaar en geen eksterne pomp benodig word om die werkvloeier mee te sirkuleer nie. In hierdie tesis word ‘n ondersoek gedoen oor die ontwikkeling van ‘n bestek van lug-totlug HPHR’s. Hierdie ondersoek het die teoretiese modellering van so ‘n HPHR geverg, sodat ‘n demonstrasie eenheid ontwerp kon word. Hierdie demonstrasie eenheid is geïnstalleer in ‘n praktiese industriële toepassing waar dit geïvalueer is deur na aspekte soos finansiële voordele en energie-besparings te kyk. Om die teoretiese HPHR model te kon ontwikkel, moes daar gekyk word na die binnehitteoordragskoëffisiënte van die verdamper- en kondensordeursneë, asook R134a en Butaan as onderskeie werksvloeiers. Die eksperimente met die hittebuise is gedoen in die vertikale en 45° (gemeet vanaf die horisontaal) posisies. Verskillende diameters is ook ondersoek, maar met die verdamper- en kondensor-lengteverhouding wat konstant gehou is. Die resultate wys dat R134a as werksvloeier in die hittebuise voorsiening maak vir groter hitteoordragstempo’s in vergelyking met Butaan as werksvloeier by min of meer dieselfde temperatuur verskil – dít ten spyte van die feit dat Butaan ‘n hoër latente-hittetydens- verdampings eienskap het. As voorbeeld gee ‘n R134a-gelaaide hittebuis ‘n hitteoordragstempo van omtrent 1160 W terwyl dieselfde hittebuis wat met Butaan gelaai is, slegs ongeveer 730 W lewer by 23 °C. Die resultate wys ook duidelik dat hoër hitteoordragstempo’s verkry word indien die hittebuis bedryf word teen ‘n hoek van 45°. ‘n Tipiese toename in hitteoordragstempo is ongeveer 24 % vir ‘n hittebuis met ‘n diameter van 31.9 mm en ‘n verdamper- tot kondensor-lengteverhouding van 0.24. Teoretiese binne-hitteoordragskoëffisiënte is ook geformuleer. Dié waardes stem redelik goed ooreen met die meeste voorgestelde korrelasies. Nieteenstaande die feit dat gedetailleerde twee-fase-vloei en die hitteoordragsgedrag van die werksvloeier binne hittebuise nog nie goed deur die wetenskaplike wêreld verstaan word nie. Korrelasies wat hierdie gedrag voorstel is geformuleer en sluit weereens die gebruik van R134a en Butaan as werksvloeiers in. Die korrelasies is geformuleer vanaf hittebuise met diameters van onderskeidelik 14.99 mm, 17.272 mm, 22.225 mm en 31.9 mm. Die verdamper- tot kondensor-lengteverhoudings vir die 31.9 mm deursnit hittebuis was 0.24 terwyl die ander hittebuise ‘n verhouding van 1 gehad het. Die hitte-vloede het gewissel van 1800-45300 W/m2. Die volgende teoretiese geformuleerde binne-hitteoordragskoëffisiënte word voorgestel vir beide vertikale sowel as nie-vertikale toepassing (LEES KORREKTE FORMULE IN VOLTEKS OPSOMMING) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ Die wiskundig-gemodelleerde demostrasie HPHR is geïnstalleer binne ‘n bestaande lugdroër-sisteem. Drywing van om en by 8.8 kW kon herwin word vanaf die warm-afvalvloeierstroom met ‘n massa vloei van 0.55 kg/s teen ‘n inlaattemperatuur van 51.64 °C en ‘n uitlaattemperatuur van 35.9 °C binne ‘n omgewing van 20 °C. Na aanleiding van hierdie herwinning, kan energiebesparings van tot 32.18 % verkry word. Die HPHR se installasiekoste kan binne ‘n berekende tydperk van ongeveer 3.3 jaar gedelg word deur hierdie besparing. Verdamper- tot kondensator-lengteverhouding, vloeistofvulverhouding en die oriëntasiehoek vereis verdere ondersoek, aangesien daar slegs ‘n akkuraatheid van 25 % verkry is tussen teoretiese voorspellings en praktiese metings.
Moe, Bjørn Kristian. „Heat Generation by Heat Pump for LNG Plants“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14671.
Der volle Inhalt der QuelleBücher zum Thema "Heat"
Griffin, Bettye. The heat of heat. Pleasant Prairie, Wis: Bunderful Books, 2010.
Den vollen Inhalt der Quelle findenArdley, Neil. Heat. New York: New Discovery Books, 1992.
Den vollen Inhalt der Quelle findenCarter, Chris. Heat. Oxford: Heineman, 1991.
Den vollen Inhalt der Quelle findenWoods, Stuart. Heat. New York: Harper, 1995.
Den vollen Inhalt der Quelle findenField, Andrea R. Heat. New York, NY: Britannica Educational Pub., 2013.
Den vollen Inhalt der Quelle findenPress, Modern Curriculum, Hrsg. Heat. 2. Aufl. Cleveland, Ohio: Modern Curriculum Press, 1993.
Den vollen Inhalt der Quelle finden1964-, Whedon Joss, Greenwalt David und Copyright Paperback Collection (Library of Congress), Hrsg. Heat. New York: Simon Spotlight Entertainment, 2004.
Den vollen Inhalt der Quelle findenHewitt, Sally. Heat. North Mankato, MN: Stargazer Books, 2006.
Den vollen Inhalt der Quelle findenGordon, Mike, 1948 March 16-, Hrsg. Heat. Hove: Wayland, 1995.
Den vollen Inhalt der Quelle findenBarrett, Jean. Heat. New York: Silhouette Books, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Heat"
Skillington, Tracey. „Heat, Heat Wave“. In Handbook of the Anthropocene, 145–49. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25910-4_23.
Der volle Inhalt der QuelleTheisler, Charles. „Heat Intolerance/Heat Stroke“. In Adjuvant Medical Care, 162–63. New York: CRC Press, 2022. http://dx.doi.org/10.1201/b22898-172.
Der volle Inhalt der QuelleWellner, Marcel. „Heat“. In Elements of Physics, 209–25. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3860-8_10.
Der volle Inhalt der QuelleWebb, Benjamin L. J., David Holmes, Chun Li, Jin Z. Zhang und Matthew T. Lloyd. „Heat“. In Encyclopedia of Nanotechnology, 1021. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100284.
Der volle Inhalt der QuelleGooch, Jan W. „Heat“. In Encyclopedic Dictionary of Polymers, 359. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5824.
Der volle Inhalt der QuelleBolton, William. „Heat“. In Engineering Science, 141–60. Seventh edition. | Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9781003093596-8.
Der volle Inhalt der QuelleArcher, W. G. „Heat“. In Love Songs of Vidyāpati, 129. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003104216-91.
Der volle Inhalt der QuelleHeß, Markus, und Valentin L. Popov. „Heat Transfer and Heat Generation“. In Method of Dimensionality Reduction in Contact Mechanics and Friction, 115–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53876-6_8.
Der volle Inhalt der QuelleKays, Stanley J. „Heat, Heat Transfer, and Cooling“. In Postharvest Physiology of Perishable Plant Products, 457–507. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8255-3_8.
Der volle Inhalt der QuelleTaylor, Sterling A., und Ray D. Jackson. „Heat Capacity and Specific Heat“. In SSSA Book Series, 941–44. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018. http://dx.doi.org/10.2136/sssabookser5.1.2ed.c38.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heat"
Xiong, Shaomin, Erhard Schreck und Sripathi Canchi. „Head Disk Spacing Effect on Heat Transfer in Heat Assisted Magnetic Recording“. In ASME 2017 Conference on Information Storage and Processing Systems collocated with the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/isps2017-5437.
Der volle Inhalt der QuelleCheng, Qilong, und David B. Bogy. „Experimental Study of Nanoscale Head-Disk Heat Transfer In Heat-Assisted Magnetic Recording“. In ASME 2021 30th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/isps2021-62275.
Der volle Inhalt der QuelleGlavachka, V., V. G. Kiselev, Yu N. Matveev, M. I. Rabetsky und P. Schtulz. „UNIFIED HEAT PIPE HEAT EXCHANGERS USED FOR HEAT RECOVERY“. In Heat Pipe Technology: Volume 2. Materials and Applications. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ihpc1990v2.570.
Der volle Inhalt der QuelleXue-Jun, Yu, Yang Tiande, Pang Cheng, Chang Shaoyong und Wu Jianmin. „Regulation and Heat Tolerance by Men in Heat Before and After Head-Down Tile“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2999.
Der volle Inhalt der QuelleSunayama, Noboru. „Heat Transfer/Thermal Analysis for Cylinder Head“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910301.
Der volle Inhalt der QuelleSatyanarayana, Janardhan H., und Keshab K. Parhi. „HEAT“. In the 33rd annual conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/240518.240520.
Der volle Inhalt der QuelleNorth, Mark T., David B. Sarraf, John H. Rosenfeld, Yuri F. Maidanik und Sergey Vershinin. „High heat flux loop heat pipes“. In AIP Conference Proceedings Volume 387. ASCE, 1997. http://dx.doi.org/10.1063/1.52046.
Der volle Inhalt der QuelleVasiliev, Leonard L., und V. V. Khrolenok. „HEAT TRANSFER IN ROTATING HEAT PIPES“. In Heat Pipe Technology: Volume 1. Fundamentals and Experimental Studies. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ihpc1990v1.290.
Der volle Inhalt der QuelleNovomestský, Marcel, Andrej Kapjor, Štefan Papučík und Ján Siažik. „Heat pipe thermosyphon heat performance calculation“. In THE APPLICATION OF EXPERIMENTAL AND NUMERICAL METHODS IN FLUID MECHANICS AND ENERGY 2016: XX. Anniversary of International Scientific Conference. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4953731.
Der volle Inhalt der QuelleMcCullough, Charles R., Scott M. Thompson und Heejin Cho. „Heat Recovery With Oscillating Heat Pipes“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66241.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heat"
Lam, P. S., und R. L. Sindelar. Heat exchanger, head and shell acceptance criteria. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10173694.
Der volle Inhalt der QuelleStinn, John P., und Hongwei Xin. Heat Lamp vs. Heat Mat as Localized Heat Source in Swine Farrowing Crate. Ames (Iowa): Iowa State University, Januar 2014. http://dx.doi.org/10.31274/ans_air-180814-1213.
Der volle Inhalt der QuelleArmstrong, Lawrence E. Heat Exhaustion. Fort Belvoir, VA: Defense Technical Information Center, Juni 1989. http://dx.doi.org/10.21236/ada212128.
Der volle Inhalt der QuelleRekos, Jr, N., und E. Parsons, Jr. Heat engines. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6905384.
Der volle Inhalt der QuelleHarris, Ben, und Alan Walker. Heat pumps. Parliamentary Office of Science and Technology, Juli 2023. http://dx.doi.org/10.58248/pn699.
Der volle Inhalt der QuelleShen, D. S., R. T. Mitchell, D. Dobranich, D. R. Adkins und M. R. Tuck. Micro heat spreader enhanced heat transfer in MCMs. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/10107765.
Der volle Inhalt der QuelleCulver, G. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)]. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6304383.
Der volle Inhalt der QuelleHodgdon, James A. Body Heat Storage and Work in the Heat. Fort Belvoir, VA: Defense Technical Information Center, Mai 2004. http://dx.doi.org/10.21236/ada430223.
Der volle Inhalt der QuelleMaynard, Julian D. Stack/Heat-Exchanger Research for Thermoacoustic Heat Engines. Fort Belvoir, VA: Defense Technical Information Center, Juni 1996. http://dx.doi.org/10.21236/ada327871.
Der volle Inhalt der QuelleHodgdon, James A. Body Heat Storage and Work in the Heat. Fort Belvoir, VA: Defense Technical Information Center, Mai 2003. http://dx.doi.org/10.21236/ada423463.
Der volle Inhalt der Quelle