Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Heart rate calculation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Heart rate calculation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Heart rate calculation"
Connolly, Declan A. J. „How Accurate Is Your Training Heart Rate Calculation?“ Strength and Conditioning Journal 24, Nr. 5 (Oktober 2002): 15–16. http://dx.doi.org/10.1519/00126548-200210000-00004.
Der volle Inhalt der QuelleSedliar, I. „Calculation the intensity of aerobic exercise in fitness“. Scientific Journal of National Pedagogical Dragomanov University. Series 15. Scientific and pedagogical problems of physical culture (physical culture and sports), Nr. 12(120) (25.12.2019): 105–9. http://dx.doi.org/10.31392/npu-nc.series15.2019.12(120)19.21.
Der volle Inhalt der QuelleKołodziej, Marcin, Andrzej Majkowski, Remigiusz J. Rak, Bartosz Świderski und Andrzej Rysz. „System for automatic heart rate calculation in epileptic seizures“. Australasian Physical & Engineering Sciences in Medicine 40, Nr. 3 (18.05.2017): 555–64. http://dx.doi.org/10.1007/s13246-017-0557-z.
Der volle Inhalt der QuelleAhmad, Imteyaz. „A Time Domain Method for Calculation of Heart Rate Variability“. International Journal of Computer Applications 176, Nr. 40 (15.07.2020): 14–17. http://dx.doi.org/10.5120/ijca2020920482.
Der volle Inhalt der QuelleChabot, Denis, Max Bayer und André de Roos. „Instantaneous heart rates and other techniques introducing errors in the calculation of heart rate“. Canadian Journal of Zoology 69, Nr. 4 (01.04.1991): 1117–20. http://dx.doi.org/10.1139/z91-156.
Der volle Inhalt der QuelleSedliar, Iurii. „Calculation of the intensity of health improving aerobic loads“. Scientific Journal of National Pedagogical Dragomanov University. Series 15. Scientific and pedagogical problems of physical culture (physical culture and sports), Nr. 5(125) (27.09.2020): 135–39. http://dx.doi.org/10.31392/npu-nc.series15.2020.5(125).27.
Der volle Inhalt der QuelleSharpley, Christopher F. „Differences in pulse rate and heart rate and effects on the calculation of heart rate reactivity during periods of mental stress“. Journal of Behavioral Medicine 17, Nr. 1 (Februar 1994): 99–109. http://dx.doi.org/10.1007/bf01856885.
Der volle Inhalt der QuelleRajib, R. U. D., Moon Ho Lee, Shadiul Hoque, Rayhan Sharif und Syeedur Rahman. „Heart Rate Calculation by Using Filtering Module Analysis from Electrocardiogram Data“. Advanced Science, Engineering and Medicine 6, Nr. 1 (01.01.2014): 108–10. http://dx.doi.org/10.1166/asem.2014.1463.
Der volle Inhalt der QuelleLu, Yujia, Ping Du, Xiaotian Xiong, Lang Qian, Jianrong Ou und Jinqu Zhang. „A Heart Rate Calculation Method Based on Dynamic Rectangular Window Interception“. Journal of Physics: Conference Series 1168 (Februar 2019): 022038. http://dx.doi.org/10.1088/1742-6596/1168/2/022038.
Der volle Inhalt der QuelleChuDuc, Hoang, Phyllis K. Stein und Hung PhamManh. „Effect of Calculation Algorithm on Heart Rate Variability by Chaos Theory“. International Journal of Electronics and Electrical Engineering 1, Nr. 3 (2013): 145–48. http://dx.doi.org/10.12720/ijeee.1.3.145-148.
Der volle Inhalt der QuelleDissertationen zum Thema "Heart rate calculation"
Håkansson, Dennis, und Johan Lövberg. „Development of algorithm for a mobile-based estimation of heart rate“. Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43561.
Der volle Inhalt der QuelleGenom att utföra ett test av ens fysiska prestanda kan man utvärdera ens hälsostatus och upptäcka indikationer på avvikelser i kroppen. Syftet med detta arbete är att utveckla en mobilbaserad algoritm som kan beräkna och uppskatta ens puls när man utför the Queens College Step Test på begäran av Mobistudy. Mobistudy vill inkludera detta test i deras mobilapplikation som fokuserar på att kunna användas som ett verktyg inom forskning för att samla in data. Algoritmen använder sig av mobilens kamera för att samla in data från användarens finger och använder den insamlade data för att beräkna pulsen. Algoritmen testades först gentemot data som samlades in vid utvecklingsstadiet och resultatet visade på att genomsnittliga felet var under 5% samt att standardavvikelsen var under 3%. Två deltagare mellan åldern 20 och 25 utförde tre tester var utav the Queens College Step Test och resultatet visade att algoritmen var tillräckligt noggrann i sin uppskattning av pulsen efter ett utfört test.
Harris, J. B. „Calculation of convective heat transfer rates in geometries relating to nuclear reactor safety research“. Thesis, University of Exeter, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377312.
Der volle Inhalt der QuelleAndrews, Nathan Christopher Ivanov Kostadin N. „Primary calculation of the linear heat rate generation of a BWR pin in the ATR B-11 position“. [University Park, Pa.] : Pennsylvania State University, 2010. http://honors.libraries.psu.edu/theses/approved/WorldWideIndex/EHT-238/index.html.
Der volle Inhalt der QuelleTsai, Kun-Hsi, und 蔡昆熹. „TSA Algorithm for Precise Pulse Rate Calculation From Heart Sound“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/h89bwk.
Der volle Inhalt der Quelle國立交通大學
生物科技學系
103
Pulse rate measurement is important for clinicians to access patient treatment as well as evaluate patient status. However, in many emergency situations, oxygen concentration was obtained by pulse oximeters and transformed into pulse rate, which is very unstable and can be influenced by the injured limb or nails decoration (nail polish, painting). When patients are experiencing critical situations such as pulseless electronic activity (PEA), it can lead to misjudgment and administered inappropriate first aid measures or lengthen the judgment time. In this study, we develop an algorithm, which can relate to the heart sound to calculate heart rates. The DS301 is equipped with this algorithm to measure the exact heart rate by the heart sound. This timing precision algorithm collected the 48KHz heart sound signal through reduce sampling, a band-pass filter, TT filtering function, TTMA moving average method, the peak position, and standard deviation calculations to simplify and catch the frequency strong band. With repeated cycles, characteristic standard deviation calculation and threshold conditions to filter out clean first, second heart sound (S1, S2) to the corresponding pulse signal. In this way, we greatly reduce the environmental noise, which diminishes the probability of inaccuracy in the heart rate measurement. To test this algorism, the prototype DS301 was used on 18 different subjects to measure heart rate included pulmonary valve, aortic pulse signal, tricuspid, and mitral valves at five diferent points. The MP70 physiological monitors (Philips intellivue mp70) was used as a reference to measure the heart rate. The TSA detection rate was 91.33% and an average detection rate of 7.025 seconds, which indicate that DS301 is with considerable potential.
Bücher zum Thema "Heart rate calculation"
Kamenskaya, Valentina, und Leonid Tomanov. The fractal-chaotic properties of cognitive processes: age. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1053569.
Der volle Inhalt der QuelleM, Yos Jerrold, Thompson Richard A und Langley Research Center, Hrsg. A Review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000K. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenM, Yos Jerrold, Thompson Richard A und Langley Research Center, Hrsg. A Review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000K. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenPlebani, Mario, Monica Maria Mion und Martina Zaninotto. Biomarkers of renal and hepatic failure. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0039.
Der volle Inhalt der QuelleKaratasakis, G., und G. D. Athanassopoulos. Cardiomyopathies. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0019.
Der volle Inhalt der QuelleBuchteile zum Thema "Heart rate calculation"
Nagy, P., und Á. Jobbágy. „Heart Rate Variability Calculation Using Heart Periods Measured Between Consecutive Ponset Points“. In 8th European Medical and Biological Engineering Conference, 613–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64610-3_69.
Der volle Inhalt der QuelleYang, Dong, Yingli Liu und Tao Du. „Network Flow Modelling for Optimizing Fire Smoke Control in Complex Urban Traffic Link Tunnels: Incorporating Heat Loss and Gas Species Generation Rate Calculation into Models“. In The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, 993–1007. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9139-3_72.
Der volle Inhalt der QuelleGrandi, Fabio, Margherita Peruzzini, Roberto Raffaeli und Marcello Pellicciari. „Transdisciplinary Assessment Matrix to Design Human-Machine Interaction“. In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200076.
Der volle Inhalt der QuellePetryshyn, Igor, und Olexandr Bas. „NATURAL GAS HEAT COMBUSTION DETERMINATION ON MEASURING SYSTEMS WITH DUPLICATE GAS UNITS“. In Integration of traditional and innovative scientific researches: global trends and regional aspect. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-001-8-2-8.
Der volle Inhalt der QuelleShen, Wei, und Benjamin Rouben. „CANDU Reactor.Physics Analysis Methods and Computer Codes“. In Fundamentals of CANDU Reactor Physics, 113–31. ASME, 2021. http://dx.doi.org/10.1115/1.884836_ch11.
Der volle Inhalt der QuelleLighton, John R. B. „Direct Calorimetry“. In Measuring Metabolic Rates, 49–62. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830399.003.0006.
Der volle Inhalt der QuelleKobayashi, Shiro, Soo-Ik Oh und Taylan Altan. „Thermo-Viscoplastic Analysis“. In Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0015.
Der volle Inhalt der QuelleTaler, Dawid, Jan Taler und Marcin Trojan. „The CFD Based Method for Determining Heat Transfer Correlations on Individual Rows of Plate-Fin and Tube Heat Exchangers“. In Heat Transfer - Design, Experimentation and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97402.
Der volle Inhalt der QuelleSyaiful und M. Kurnia Lutfi. „Numerical Investigation of Heat Transfer and Fluid Flow Characteristics in a Rectangular Channel with Presence of Perforated Concave Rectangular Winglet Vortex Generators“. In Heat Transfer - Design, Experimentation and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96117.
Der volle Inhalt der QuelleFealey, Robert D. „Thermoregulatory Sweat Test“. In Clinical Neurophysiology, 643–57. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190259631.003.0038.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Heart rate calculation"
Kalinkov, Kalin, Valentina Markova und Todor Ganchev. „Heart Rate Variability calculation methods“. In 2020 International Conference on Biomedical Innovations and Applications (BIA). IEEE, 2020. http://dx.doi.org/10.1109/bia50171.2020.9244285.
Der volle Inhalt der QuellePaliwal, Sukriti, C. Vasantha Lakshmi und C. Patvardhan. „Real time heart rate detection and heart rate variability calculation“. In 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). IEEE, 2016. http://dx.doi.org/10.1109/r10-htc.2016.7906818.
Der volle Inhalt der QuelleRisk, M. R., D. F. Slezak, P. Turjanski, A. Panelli, R. A. M. Taborda und G. Marshall. „Time series calculation of heart rate using multi rate FIR filters“. In 2007 34th Annual Computers in Cardiology Conference. IEEE, 2007. http://dx.doi.org/10.1109/cic.2007.4745542.
Der volle Inhalt der QuelleImtiaz, Mohammad Shamim, Rajeena Shrestha, Talwinder Dhillon, Kazi Ata Yousuf, Bilal Saeed, Anh Dinh und Khan Wahid. „Cardiac cycle and heart rate calculation based on seismocardiogram“. In 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2013. http://dx.doi.org/10.1109/ccece.2013.6567772.
Der volle Inhalt der QuelleLiu, Lei, Qun-Chao Chen und Liang-Hung Wang. „Fast algorithm for heart rate calculation based on an Android application“. In 2017 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). IEEE, 2017. http://dx.doi.org/10.1109/icce-china.2017.7991041.
Der volle Inhalt der QuelleMeddah, Karim, Malika Kedir-Talha und Hadjer Zairi. „FPGA-based system for heart rate calculation based on PPG signal“. In 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). IEEE, 2017. http://dx.doi.org/10.1109/icee-b.2017.8192157.
Der volle Inhalt der QuelleBerset, T., I. Romero, A. Young und J. Penders. „Robust heart rhythm calculation and respiration rate estimation in ambulatory ECG monitoring“. In 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2012. http://dx.doi.org/10.1109/bhi.2012.6211599.
Der volle Inhalt der QuelleParsinejad, Payam, Yolanda Rodriguez-Vaqueiro, Jose Angel Martinez-Lorenzo und Rifat Sipahi. „Combined Time-Frequency Calculation of pNN50 Metric From Noisy Heart Rate Measurements“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6297.
Der volle Inhalt der QuelleAyub, Shahanaz, Gaurav Gupta und Yogender Kumar. „Heart Rate Calculation and Detection of T-Wave Alternans by Correlation Method“. In 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2016. http://dx.doi.org/10.1109/cicn.2016.45.
Der volle Inhalt der QuelleSantos, Andres, Maria J. Ledesma-Carbayo, Norberto Malpica, Manuel Desco, Jose C. Antoranz, Pedro Marcos-Alberca und Miguel A. Garcia-Fernandez. „Accuracy of heart strain rate calculation derived from Doppler tissue velocity data“. In Medical Imaging 2001, herausgegeben von Michael F. Insana und K. Kirk Shung. SPIE, 2001. http://dx.doi.org/10.1117/12.428235.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Heart rate calculation"
Plodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/7025424.
Der volle Inhalt der QuellePlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/6593562.
Der volle Inhalt der QuelleRichard G. Ambrosek, Gray S. Chang und Debbie J. Utterbeck. Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations. Office of Scientific and Technical Information (OSTI), Februar 2005. http://dx.doi.org/10.2172/911238.
Der volle Inhalt der QuellePlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Revision 2. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/10151234.
Der volle Inhalt der QuellePlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Revision 1. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/10190215.
Der volle Inhalt der Quelle