Dissertationen zum Thema „Heart Metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Heart Metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Murray, Andrew James. „Control of cardiac metabolism and efficiency“. Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:858cc1f9-7ba0-4999-a1c8-614a950888c2.
Der volle Inhalt der QuelleBabić, Nikolina. „Regulation of energy metabolism of heart myoblasts /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/11563.
Der volle Inhalt der QuelleBelke, Darrell David. „Hypothermia and energy substrate metabolism in the heart“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21548.pdf.
Der volle Inhalt der QuelleRåmunddal, Truls Are. „Myocardial metabolism in experimental infarction and heart failure /“. Göteborg : Department of Molecular and Clinical Medicine, The Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy Göteborg University, 2008. http://hdl.handle.net/2077/9565.
Der volle Inhalt der QuelleHeather, Lisa Claire. „Substrate transporters and metabolism in the hypertrophied heart“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442468.
Der volle Inhalt der QuelleBeadle, Roger. „Metabolic manipulation in chronic heart failure“. Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201651.
Der volle Inhalt der QuelleAdix, Longlet Nancy J. „Chronic Ventricular Sympathectomy : Effects on Myocardial Metabolism“. Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc278768/.
Der volle Inhalt der QuelleJones, Barney. „Ischaemia and efficiency in the isolated heart“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311982.
Der volle Inhalt der QuelleLindbom, Malin. „Myocardial creatine metabolism in experimental infarction and heart failure /“. Göteborg : Dept. of Molecular and Clinical Medicine/Cardiology, Wallenberg Laboratory for Cardiovascular research, Sahlgrenska Academy, Göteborgs Universitet, 2007. http://hdl.handle.net/2077/7380.
Der volle Inhalt der QuelleKalsi, Kameljit Kaur. „Nucleotide and adenosine metabolism in heart failure and cardioprotection“. Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409176.
Der volle Inhalt der QuelleTurner, J. E. „Collagen metabolism in normal heart and during cardiac hypertrophy“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47290.
Der volle Inhalt der QuelleKeon, Claudia Anne. „Myocardial energy transduction in the isolated working rat heart“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244563.
Der volle Inhalt der QuelleTien, Pamela. „Reductive metabolism of aliphatic tertiary amine n-oxides“. Thesis, De Montfort University, 1999. http://hdl.handle.net/2086/10714.
Der volle Inhalt der QuelleÁlvarez, Guardia David. „Estudi dels mecanismes moleculars implicats en l’associació entre inflamació i alteracions metabòliques en cèl∙lules cardíaques“. Doctoral thesis, Universitat de Barcelona, 2011. http://hdl.handle.net/10803/31985.
Der volle Inhalt der QuelleThe change in lifestyle that has occurred in developed societies in recent years has been accompanied by the rise of sedentary behavior and changes in diet that have caused an increasing obesity prevalence. Obesity has a huge number of adverse effects on cardiovascular physiology and is considered an important risk factor for heart failure developement. In fact, high fat diets have been linked with direct cardiac abnormalities such as inflammation, hypertrophy and contractile dysfunction. During the inflammatory process that occurs in these diseases, human cardiac cells secrete proinflammatory cytokines and chemokines such as TNF-α, MCP-1, and IL-6, molecules that are under the control of the ubiquitous and inducible transcription factor NF-κB. In certain circumstances, such in hypertrophy and heart failure, the substrate flexibility in heart is compromised and the fatty acids β-oxidation is reduced because the main source of energy becomes the glucose. These metabolic changes lead to a deregulation on the transcriptional control of genes associated with transport, uptake and catabolism of fatty acids and glucose. In the myocardium, among the transcription factors involved in the control of these genes we found ERRα and PPARβ/δ. Both transcription factors, are involved in PDK4 activation, an important enzyme in the homeostatic modulation of glucose. This kinase regulates PDC activity, an enzyme that catalyzes the decarboxylation from pyruvate to acetyl-CoA, limiting the use of carbohydrates as energy source in mitochondria and thus favoring the fatty acid β-oxidation. In the PDK4 transcription activation also participates PGC-1α, which interacts with ERRα and PPARβ/δ, increasing its transcriptional activity. However recent studies, suggest that not only these two transcription factors are involved in PDK4 regulation. Other transcription factors as E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Overall, the results shown in this work are aimed to learn in more detail the molecular mechanisms linking the metabolic disorders and inflammatory processes in heart, in order to find potential drug targets to prevent and treat these pathological states.
Piepoli, Massimo F. „Cardiovascular and ventilatory responses to exercise in chronic heart failure“. Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243516.
Der volle Inhalt der QuelleJackson, Kim Geraldine. „Acute and chronic effects of monounsaturated fatty acid intake on chylomicron metabolism“. Thesis, University of Surrey, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360952.
Der volle Inhalt der QuelleHopkins, James Charles Alex. „Myocardial glycogen, glucose uptake and insulin sensitivity : interrelations and changes with disease“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363766.
Der volle Inhalt der QuelleKreshel, Leigh Anne. „Increasing energy expenditure of cardiac rehabilitation patients“. Electronic thesis, 2002. http://dspace.zsr.wfu.edu/jspui/handle/10339/175.
Der volle Inhalt der QuelleErol, Erdal. „Heart- and liver-type fatty acid binding proteins in lipid and glucose metabolism“. Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/1148.
Der volle Inhalt der QuellePonce, Jessica Marie. „Investigating the roles of cyclin C in the mammalian heart“. Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7015.
Der volle Inhalt der QuelleCosta, Eunice Cristina da Silva. „Glicogenio cardiaco em diabetes experimental : efeitos do tratamento com metformina e/ou glibenclamida sobre as funções cardiacas em coração isolado“. [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/313912.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-04T15:30:30Z (GMT). No. of bitstreams: 1 Costa_EuniceCristinadaSilva_D.pdf: 2678840 bytes, checksum: 439eb1d320bc5d4828c77cb0e086e763 (MD5) Previous issue date: 2005
Resumo: Objetivos: Metformina e glibenclamida são fármacos utilizados para diminuir a glicemia de diabéticos tipo 2. Metformina reduz a absorção gastrintestinal de glicose e a gliconeogênese hepática e aumenta a captação de glicose periférica. Por sua vez, glibenclamida aumenta a liberação de insulina após bloquear canais de K+. Apesar destes efeitos, metformina em altas concentrações e glibenclamida podem influenciar o sistema cardiovascular e acelerar a progressão de doenças vasculares, predispondo o coração à falência cardíaca ou infarto. Estas e outras mudanças fisiológicas podem ser associadas a um ECG anormal, mostrando aumento do intervalo QT e de sua dispersão (QTd). Estas mudanças podem ser associadas a um baixo limiar para arritmias ventriculares e provocar morte súbita durante isquemia. Neste estudo avaliamos os efeitos do tratamento com metformina e/ou glibenclamida em ratos diabéticos por aloxana sobre os intervalos do ECG: QT e suas derivadas QTc, QTd, e QTcd. Em outra série experimental avaliamos a pressão desenvolvida pelo ventrículo esquerdo (LVP) e as suas derivadas (DP/Dt+ e DP/Dt-), usando a preparação de Langendorff utilizando coração isolado de ratos diabéticos. A isquemia foi provocada pela perfusão (1 h) com noradrenalina (NE). Além disso, o glicogênio foi medido em coração de ratos antes e após perfusão com noradrenalina. As alterações histológicas no ventrículo também foram estudadas. Métodos: Ratos Wistar machos, diabéticos por aloxana, foram tratados com metformina (3,5, 30 e 74 mg.g-1 de peso corporal ¿ p.c) ou glibenclamida (0,10 mg/g-1 p.c) e/ou glibenclamida e metformina (0,10 + 3,5 mg.g-1 p.c), simultaneamente durante 30 dias. O ECG foi registrado no 15o e 30o dia de tratamento. No 30º dia, sob anestesia, o coração foi isolado e perfundido com solução de Krebs-Henseleit em um aparelho de Langendorff. A isquemia foi induzida com noradrenalina 10-6 M (2 ml.min-1.g-1) mantida durante 1 h na solução perfusora. O glicogênio tecidual (mg.100.mg-1) foi extraído de fragmentos de ventrículo de ratos em repouso ou após a perfusão. O glicogênio foi medido pelo método do fenol sulfúrico. Em outros grupos de ratos, preparados de modo idêntico, os corações foram removidos sob anestesia e fixados em formoldeído em tampão PBS. Secções de ventrículo foram preparadas depois de embebidas em parafina e em seguida, os cortes foram fixados em lâminas e corados pelo método hematoxilina eosina (HE). O ensaio do glicogênio ventricular foi feito usando o método ácido de Schiff. Os núcleos foram contados e as suas áreas foram medidas (mm2). Os grânulos de glicogênio foram detectados pela coloração violeta do citoplasma, usando o método de schiff (PAS positivo) e fotografados. Resultados: Após 15 e 30 dias, a glicemia, o intervalo QT e as suas derivadas aumentaram nos ratos diabéticos. Após 30 dias, a glicemia diminuiu em ratos diabéticos que foram tratados com doses baixa ou intermediária de metformina (3,5 e 30 mg.g-1 p.c.), ou com glibenclamida e com a combinação glibenclamida + metformina (3,5 mg.g-1 p.c.). Entretanto, o grupo tratado com a dose mais alta de metformina (74 mg.g-1 p.c) não teve a sua glicemia diminuída. Por outro lado, nos ratos tratados com doses: baixa ou intermediária de metformina os intervalos do ECG: QTc, QTd e QTcd foram reduzidos, em relação ao grupo diabético tratado com a maior dose de metformina. Estes resultados também produziram melhores efeitos em comparação aos grupos diabéticos tratados com glibenclamida e nos grupos tratados com a associação glibenclamida e metformina. Doses baixas, intermediárias e altas (3,5, 30 e 74 mg.g-1 p.c.) de metformina aumentou o armazenamento de glicogênio no ventrículo de ratos diabéticos de 0,19 ± 0,007 (controle) para 0,38 ± 0,007 mg.100 mg-1, 0,5 ± 0,05 mg.100 mg-1 e 0,7 ± 0,04 mg.100 mg-1 (p< 0,05), respectivamente. Quanto à pressão sistólica ventricular, houve rápido aumento da pressão logo no inicio da perfusão com NE no grupo controle, com pico de pressão a 145 ± 9,7 mmHg), seguido de lenta queda até 99 ± 3 mmHg. Esta tendência foi observada também nas derivadas DP/Dt+ e DP/Dt-. Metformina (3,5 e 30 mg.g-1 p.c) e glibenclamida isoladamente ou em associação com metformina protegeram o músculo cardíaco durante a isquemia, não diferindo do grupo controle. Contudo, ratos diabéticos não tratados ou tratados com a maior dose de metformina, desenvolveram pressão sistólica máxima inferior a todos os grupos experimentais, revertendo aos níveis basais mais rapidamente que nos demais grupos. As derivadas DP/Dt+ e DP/Dt- mostraram curvas semelhantes. Após a isquemia, o glicogênio diminuiu em todos os grupos, sendo 0,09 ± 0,007 no grupo controle; 0,1 ± 0,006 nos diabéticos e 0,6 ± 0,005 nos diabéticos tratados com 74 mg.g-1 pc de metformina. O tratamento com glibenclamida e/ou metformina diminuiu o estoque de glicogênio de 0,62 ± 0,05 mg.100 mg-1 para 0,19 ± 0,05 mg.100 mg-1 e de 0,74 ± 0,03 mg.100 mg-1 para 0,22 ± 0,008 mg.100 mg-1, respectivamente. Entretanto, a utilização de glicogênio foi proporcional em todos os grupos. A análise morfológica demonstrou um aumento na quantidade dos núcleos no coração de ratos diabéticos de 21,33 ± 1.17 (no grupo controle) para 36,6 ± 5 (p< 0,05) e redução na média da área dos núcleos, de 0,16 ± 0,02 (controle) para 0,08 ± 0,01 (p< 0,05). No grupo tratado com a menor concentração de metformina (DM 3.5) diminuiu a quantidade de núcleos de 36,6 ± 5 (grupo diabético) para 22,8 ± 2 (p< 0,05), porém aumentou a média da área dos núcleos de 0,08 ± 0,01 mm2 para 0,17± 0,01 mm2 (p< 0,05). Nos grupos tratados com as maiores doses de metformina (30 e 74 mg.g-1 p.c.), a quantidade de núcleos aumentou para 34,16 ± 1,85 e 47,29 ± 2,92, respectivamente), e suas respectivas áreas aumentaram para 0,86 ± 0,05 e 0,5 ± 0,06, diferindo dos grupos controle e dos diabéticos não tratados. Nos grupos diabéticos tratados com glibenclamida e glibenclamida + metformina, as áreas dos núcleos aumentaram de 0,08 ± 0,01 mm2 para 0,71 ± 0,09 mm2 e 0,67 ± 0,01 mm2, respectivamente, (p< 0,001). Conclusões: O aumento na dispersão dos intervalos QT com o tratamento pode significar um risco de arritmia que predispõe ratos à morte súbita. Os resultados da pressão obtidos pelo método de Langendorff indicam que a força de contração diminuiu durante o período de isquemia por NE, sugerindo que o coração estava mais rígido. Estes resultados permitem-nos deduzir que as maiores doses de metformina, 74 mg.g-1 indicados como as máximas para humanos, podem causar sérios prejuízos ao trabalho cardíaco em caso de sobrecarga. Por outro lado, altas doses de metformina, de glibenclamida e a associação entre estas drogas aumentam a quantidade e o tamanho dos núcleos. Conseqüentemente, o ventrículo hipertrofia, em decorrência do aumento da atividade celular, prejudicando de modo importante, a estrutura e a função cardíaca. Portanto, este aumento de glicogênio está associado à severidade e à duração do diabetes. Assim, o coração torna-se altamente susceptível à isquemia
Abstract: Metformin and glibenclamide are pharmacos used to decrease blood glucose on type 2 diabetics. Metformin decreases gastrointestinal absorption of glucose and gluconeogenesis and increases peripheric glucose uptake. Glibenclamide increases insulin secretion by blocking K+ channels. Besides these effects, metformin and glibenclamide may influence cardiovascular system, which accelerate the progression of vascular disease, predisposing heart to failure or infarct. These abnormalities associated to physiological changes may generate an abnormal ECG, with an increased QT interval and its correspondent dispersion (QTd). These changes could be associated to a lower threshold for malignant ventricular arrhythmias and a sudden death by ischemia. The aim of this study was to evaluate the effects of metformin and/or glibenclamide treatment on QT intervals and its derivatives: QTc, QTd, and QTcd. We also evaluated the pressure developed by left ventricle (LVP) and calculate the correspondents derivatives (DP/Dt+ and DP/Dt-) on heart isolated from diabetic rats, under ischemia caused by norepinephrine (NE). Glycogen was measured after ischemia and compared to control heart, non-submitted to NE. We also analyzed the histological changes in ventricle cells. Methods: Male Wistar diabetic rats were treated by metformin (3.5, 30 and 74 µg.g-1 b.w) or glibenclamide (0.13 µg.g-1 b.w) and its association to metformin (0.13 µg.g-1 b.w + 3.5 µg.g-1 b.w) during 30 days. A 6-lead ECG was recorded initially and after 15 and 30 days treatment. At the end, under anaesthesia, heart were isolated and perfused by Krebs-Henseleit solution in a Langendorff apparatus. Ischemia were induced by adding norepinephrine 10-6 M to the solution (2 ml.min-1.g) during 1 h. Glycogen (mg.100 mg-1 wet tissue) was measured on heart at rest or after perfusion, using the fenol sulfuric method. In another group, after anaesthesia hearts were removed, cleaned and fixed in phormoldheyde in PBS buffer. Thin ventricle sections were made and after paraffin embedding, fine slices were cut and stained with hematoxilin eosin (HE). Ventricle glycogen assay was performed on those slides using the acid Schiff process. The number of nuclei was counted out and nuclei area was measured (mm2). Glycogen granules were recognized the violet colored cytoplasm. Results: After 15 and 30 days, glycemia, QT interval and its derivates increased on diabetic rats. On the other hand, diabetic rats treated during 30 days by low and intermediate doses of metformin (3.5 and 30 µg.g-1 b.w.) or glibenclamide or glibenclamide plus metformin, all decreased glycemia. However, the group treated with the highest dose of metformin (74 µg.g-1 b.w) failed to reduce glycemia. On the other hand, the groups treated by low and intermediate doses reduced the ECG intervals: QTc, and QTd, and QTcd, in contrast to the diabetic group treated with the highest metformin dose and the groups treated by glibenclamide and glibenclamide associated to metformin. Metformin, in low and high doses (3.5, 30 and 74 mg.g-1 b.w.) increased glycogen storage on diabetic rat ventricle, from 0.19 ± 0.007 (control group) to 0.38 ± 0.007 mg.100 mg-1, 0.5 ± 0.05 mg.100 mg-1 and 0.7 ± 0.04 mg.100 mg-1, p< 0.05, respectively. The treatment with glibenclamide alone or associated to metformin increased glycogen, too. In the control group, isolate hearts showed a rapid increase on ventricular pressure, just initiation of NE perfusion (145 ± 9.7 mmHg), followed by a slow fall to 99 ± 3 mmHg. Similar changes was found on the derivates DP/Dt+ and DP/Dt-. Metformin (3.5 and 30 mg.g-1), glibenclamide and glibenclamide associated to metformin protected cardiac muscle during ischemia, similarly to the control group (p> 0.05). But, the non-treated diabetic group and the group treated by 74 mg.g-1 of metformin, produced a maximal pressure which were inferior to the control group and the reversion of the LVP, DP/Dt+ and DP/Dt- was faster than that of the control group. After ischemia, glycogen was reduced on all groups to 0.09 ± 0.007 mg.100 mg-1 on control group; 0.1 ± 0.006 mg.100 mg-1 on diabetic group and 0.06 ± 0.005 mg.100 mg-1 on DM74. However, this decrease was inferior to that of the group treated by the highest dose. The treatment with glibenclamide alone and associated to metformin diminished glycogen storage from 0.62 ± 0.05 mg.100 mg-1 to 0.19 ± 0.05 mg.100 mg-1 and 0.74 ± 0.03 mg.100 mg-1 to 0.22 ± 0.008 mg.100 mg-1. However its utilization was proportional for all groups. Heart submitted to ischemia decreases its reserve, (p< 0.05 compared to non-ischaemic). These results suggested that high doses metformin, in special 74 mg.g-1 b.w., indicated as maximal for humans, makes heart prompt to ischemia. Diabetic rat hearts showed an increase on the amount of nuclei, from 21.33 ± 1.17 to 36.6 ± 5 (p< 0.05) and a reduction of its area, from 0.16 ± 0.02 mm2 to 0.08 ± 0.01 mm2 (p< 0.05) in comparison to the control group. The lowest dose of metformin (DM 3.5) diminished the amount of nuclei (36.6 ± 5 vs 22.8 ± 2; p< 0.05) and increased theirs size (0.08 ± 0.01 vs 0.17± 0.01). The amount of nuclei increased to 34.16 ± 1.85 and 47.29 ± 2.92 during the treatment with high metformin doses, (30 and 74 mg.g-1 b.w., respectively), and the nuclei area increased to 0.86 ± 0.05 mm2 and 0.5 ± 0.06 mm2, respectively, differing from control and non-treated diabetic groups. Similar result, was obtained on the group treated by glibenclamide and/or metformin, on cardiac cells, which the nuclei area increased to 0.71 ± 0.09 mm2 and 0.67 ± 0.01 mm2, respectively, (p< 0.001). Conclusions: The increased dispersion of QT intervals during treatment may be subjacent to the risks of arrhythmias that predispose humans to sudden death. Results shown on Langendorff methodology indicate that contraction force decreased, suggesting that ventricle muscle were prone to ischemia. Then, high metformin doses (74 mg.g-1), as indicated for humans, may cause damage to cardiac work during overload. High metformin doses, glibenclamide and glibenclamide associated to metformin increase the number of nuclei, as well, theirs size. Consequently, the ventricle hypertrophy due to an increased cellular activity may cause important injuries to cardiac structure and function. We can conclude that, the increased glycogen content on ventricle was associated to the severity and the duration of diabetes. Then, heart became more susceptible to the ischemia effects
Doutorado
Fisiologia
Doutor em Biologia Funcional e Molecular
Steeples, Violetta Rae. „Metabolic modulation through deletion of hypoxia-inducible factor-1α and fumarate hydratase in the heart“. Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:f546ca24-6226-4846-b492-30de26836e94.
Der volle Inhalt der QuelleMorgan, Eric E. „The Cardiac Fatty Acid Metabolic Pathway in Heart Failure“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1138394643.
Der volle Inhalt der QuelleDormans-Linssen, Maria Caroline Jacqueline Gerarda. „Cells of adult rat heart isolation, characterization and some aspects of fatty acid metabolism /“. Maastricht : Maastricht : Universitaire Pers Maastricht ; University Library, Maastricht University [Host], 1993. http://arno.unimaas.nl/show.cgi?fid=5959.
Der volle Inhalt der QuelleWu, Joe. „HIF-1α in the Heart: Provision of Ischemic Cardioprotection and Remodeling of Nucleotide Metabolism“. Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2450.
Der volle Inhalt der QuelleMansor, Latt Shahril. „Effect of hypoxia on cardiac metabolism and function in the type 2 diabetic heart“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:e84a3068-0c7d-46d7-a37f-3433cc06b3d4.
Der volle Inhalt der QuelleWhitman, Samantha. „Fragile X Related Protein-1 (FXR1) Regulates RNA Metabolism in Striated Muscle“. Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/195153.
Der volle Inhalt der QuelleBursill, Christina. „Green tea and its catechins modulate cholesterol metabolism in cultured human liver (HepG2) cells and the hypercholesterolaemic rabbit“. Title page, contents and introduction only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09pdb9725.pdf.
Der volle Inhalt der QuellePalácio, Manoel Angelo Gomes. „Glicemia na ressuscitação cardiopulmonar“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/98/98131/tde-06102011-075431/.
Der volle Inhalt der QuelleAlthough hyperglycemia is associated with poor outcomes in emergency conditions, limited data exist regarding the effects of serum glucose on cardiopulmonary resuscitation (CPR). Methods and Results: In a prospective, blinded animal study, ventricular fibrillation was induced in 32 pigs. Standard CPR was initiated at 7 min and continued for up to 30 min or until the return of spontaneous circulation (ROSC). The animals were randomly assigned into three groups according to the medication administered: epinephrine (n=12), vasopressin (n=12), and saline (n=8). The serum glucose was measured at baseline, 4 min, 8 min, 9 min (immediately after the first shock), with the first dose of medication, and then every 5 min. ROSC occurred in 19 pigs: in 10/12 of the epinephrine group, 7/12 of the vasopressin group, and 2/8 of the saline group. A significant difference in the ROSC rate was found only between the epinephrine and saline groups (p=0.019). The serum glucose presented a typical pattern; hyperglycemia was present in all the groups and was higher in those animals that achieved ROSC, independent of the drug administered (229 ± 15 mg/dL vs. 182 ± 15 mg/dL; p=0,041). This difference was first noticed at 9 min and the largest difference occurred at 14 min, after 7 min of CPR, and 5 min after the first medication (263 ± 20 mg/dL vs. 178 ± 16 mg/dL; p=0,006). Conclusions: In an experimental VF study, there was a typical hyperglycemic response pattern during CPR, and higher glucose levels were associated with ROSC.
Lage, Jéssica. „Frequência cardíaca, lactato, custo líquido de transporte e energia metabólica de equinos de marcha batida ou picada da raça Mangalarga Marchador /“. Jaboticabal, 2016. http://hdl.handle.net/11449/143447.
Der volle Inhalt der QuelleMarcos Jun Watanabe
José Corrêa de Lacerda Neto
Resumo: Objetivou-se caracterizar a frequência cardíaca máxima (FCMÁX), a intensidade da prova de marcha oficial e comparar o custo de transporte (COT) e a energia metabólica (P) de equinos da raça Mangalarga Marchador (MM) de marcha picada (MP) ou batida (MB). Ao todo 22 equinos da raça MM participaram deste estudo. O experimento foi realizado em três fases: 1) teste de esforço máximo (TEM), 2) provas oficiais de marcha (POM) e 3) teste padronizado de marcha (TMP). Para caracterizar a FCMÁX, 19 equinos (14 de MB e 5 de MP) realizaram um TEM. Destes, 13 (9 de MB e 4 de MP) foram monitorados durante a POM que foi composta por 4 etapas: marcha, passo, prova funcional e estação. A média da FC de cada etapa da POM foi relacionada à FCMÁX para determinação da sua intensidade relativa. O TPM foi realizado com 14 equinos (9 de MB e 5 de MP), dos quais 11 já haviam participado das etapas anteriores. O COT e P foram calculados a partir dos valores de frequência cardíaca (FC) obtidos durante o TMP. Amostras sanguíneas foram coletadas para análise da concentração plasmática de lactato [Lac]. Aplicou-se o teste t de student e ANOVA de uma via seguida pelo teste Holm-Sidak (P<0,05). A FCMÁX média foi de 211±11 e 214±11 bpm para os grupos MB e MP, respectivamente, não havendo diferença (P>0,05) entre eles. A [Lac] aumentou em decorrência do TEM, sem diferença entre os grupos. Isto indicou que os grupos possuíam a mesma aptidão física. As etapas da POM definidas no nosso estudo diferiram quanto à i... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This study aimed to characterize the maximum heart rate (HRMÁX), the intensity of the official marcha test (OMT) and compare the cost of transport (COT) and metabolic power (P) of Mangalarga Marchador (MM) horses of marcha batida (MB) and marcha picada (MP). Twenty-two MM horses participated in this study. The experiment was conducted in three phases: 1) maximal effort test (MET), 2) official marcha test (OMT) and 3) standardized walk test (SWT). To characterize the HRMÁX, 19 horses (14 MB and 5 MP) underwent a MET. Of these, 13 (9 MB and 4 MP) were monitored during the OWT that consisted of 4 stages: walk, marcha, functional test and rest. The average HR in each stage of OMT was correlated to the HRMÁX to determine their relative intensity. The SWT was performed with 14 horses (9 MB and 5 MP), of which 11 had already participated in the previous stages. The COT and P were calculated from the heart rate values (HR) obtained during the SWT. Blood samples were collected to analyze plasma lactate concentration [Lac]. Student t test and one-way ANOVA followed by Holm-Sidak test (P <0.05) were used to analyze the results. The average HRMÁX was 211 ± 11 and 214 ± 11 bpm for the MB and MP groups, respectively, with no difference (P> 0.05) between them. The [Lac] increased as a result of MET, with no difference between groups. This indicated that horses of both groups had the same physical fitness levels. The OMT stages defined in our study differed regarding the relative intensity o... (Complete abstract click electronic access below)
Mestre
Wallin, Mats. „The GH/IGF-1 system during surgery and catabolism : focus on metabolism and heart function /“. Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-418-1/.
Der volle Inhalt der QuelleJohnson, Andrew William. „Metabolic control of energetics in human heart and skeletal muscle“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:82c0dce6-a162-4c08-b061-3ea7f2e35134.
Der volle Inhalt der QuelleGasparini, Isabella. „Cardiorespiratory responses upon increased metabolism in the Ornate Tinamou, Nothoprocta ornata“. Thesis, Linköpings universitet, Biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81900.
Der volle Inhalt der Quelle陈美翩 und Meipian Chen. „Effects of iron overload on apoptosis and titin proteolysis in cardiomyocytes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193425.
Der volle Inhalt der Quellepublished_or_final_version
Paediatrics and Adolescent Medicine
Doctoral
Doctor of Philosophy
Imbriolo, Jamie. „Increased flux through the hexosamine biosynthetic pathway leads to the induction of acetol-CoA caboxylase gene expression in the heart“. Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/21459.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Gene expression of the cardiac isoform of acetyl-CoA carboxylase (ACCb) is induced in a glucose-dependent manner. ACCb produces malonyl-CoA, a potent inhibitor of mitochondrial fatty acid uptake. Previous studies show that increased flux through the hexosamine biosynthetic pathway (HBP) under hyperglycaemic conditions may contribute to the development of insulin resistance. In light of this, we hypothesised that increased HBP flux induces cardiac ACCb gene expression thereby contributing to the onset of insulin resistance. We tested our hypothesis by transiently transfecting cardiac-derived rat H9c2 myoblasts with a 1,317 bp human ACCb promoter-luciferase construct (pPIIb-1317) and an expression construct encoding the rate-limiting step of the HBP i.e. glutamine: fructose 6-phosphate amidotransferase (GFAT). Overexpression of GFAT increased ACCb gene promoter activity by 75 ± 23% versus controls (n=6, p<0.001). When cotransfection experiments were repeated in the presence of varying concentrations of L-glutamine (0 mM, 4 mM, 8 mM), a substrate for the HBP, ACCb promoter activity was dose-dependently increased. To further corroborate these findings, we employed two inhibitors of GFAT, i.e. 40 μM azaserine and 40 μM 6-diazo-5-oxo-Lnorleucine were administered to transfected cells for a period of 24 hours. Here both azaserine and 6-diazo-5-oxonorleucine attenuated ACCb gene promoter activity. In agreement, co-transfections with two dominant negative GFAT constructs also diminished ACCb gene promoter activity. We next inhibited two enzymes of the HBP acting downstream of GFAT, i.e. O-GlcNAc transferase and O-GlcNAcase using alloxan (0.1 mM, 1 mM and 2 mM) and streptozotocin (5 mM and 10 mM), respectively, for a period of 24 hours. Addition of alloxan attenuated ACCb gene promoter activity by 35.6 ± 1.9% (n=16, p<0.001) and streptozotocin increased activity by 32 ± 12% (n=12, p<0.001). We also investigated USF1 and USF2 as transcriptional regulatory candidates for HBP-induced ACCβ promoter regulation. Our data implicates USF2 as an important transcriptional regulator of HBP-induced ACCβ promoter regulation. In summary, this study demonstrates that increased flux through the hexosamine biosynthetic pathway induces ACCb gene promoter activity. We further propose that such an induction would reduce cardiac fatty acid oxidation, thereby leading to intracellular lipid accumulation due to a mismatch between sarcolemmal FA uptake and mitochondrial FA oxidation in the insulin resistant setting (i.e. hyperlipidaemia).
AFRIKAANSE OPSOMMING: Geen uitdrukking van die kardiale isoform asetiel-KoA karboksilase (ACCb) word in ‘n glukose afhanklike wyse geïnduseer. ACCb produseer maloniel-KoA, ‘n kragtige inhibeerder van mitochondriale vetsuuropname. Vorige studies toon aan dat verhoogde fluks deur die heksosamien biosintestiese weg (HBW) onder hiperglukemiese toestande bydra tot die ontwikkeling van insulienweerstand. In die lig hiervan, word daar gehipotetiseer dat verhoogde HBP fluks kardiale ACCb geenuitdrukking induseer en so bydra tot die ontstaan van insulienweerstand. Ons hipotese is getoets deur die kardiale afkomstige rot H9c2 mioblaste met ‘n 1.317 bp mens ACCb-lusiferase promotor konstruk (pPII-1317) te transfekteer en ‘n uitdrukking te konstrueer wat die tempo bepalende stap van HBP i.e. glutamien: fruktose-6-fosfaat amidotransferase (GFAT) kodeer. Ooruitdrukking van GFAT verhoog ACCb geenpromotor aktiviteit deur 75 ± 23% teenoor kontrole (n=6, p<0.001). Die herhaling van ko-transfeksie eksperimente is herhaal in die teenwoordigheid van variëerbare L-glutamienkonsentrasies (0 mM, 4 mM, 8 mM), ’n substraat vir die HBP, ACCb promotor aktiwiteit is dosisafhanglik verhoog. Om die bevindinge verder te staaf, is twee inhibeerders van GFAT, i.e. 40 μM azaserien en 40 μM 6-diazo-5-oxo-L-norleusien aan transfeksie selle toegedien vir ’n tydperk van 24 uur. Beide azaserien en 6-diazo-5-oxo-L-norleusien verlaag ACCb geenpromotor aktiwiteit. In ooreenstemming met die bogenoemde het ko-transfeksies met twee dominante negatiewe GFAT konstrukte ook ACCb geenpromoter aktiwiteit verminder. Die volgende stap is om twee ensieme van die HBP wat stroomaf van GFAT aktief is, vir ‘n periode van 24 uur te inhibeer i.e. O-GlcNAc transferase en O-GlcNAcase deur alloxan (0.1 mM, 1 mM en 2 mM) and streptozotosien (5 mM en 10 mM) onderskeidelik vir ‘n 24 uur periode te gebruik. Toevoeging van alloxan het die ACCb geenpromotor aktiwiteit by 35.6 ± 1.9% (n=16, p<0.001) verlaag en streptozotosien aktiwiteit verhoog by 32 ± 12% (n=12, p<0.001). Ons het ook die USF1 en USF2 as transkripsie regulerings kandidate vir HBP-geïnduseerde ACCβ promotor regulering ondersoek. Ons data impliseer dat USF2 as ‘n belangrike transkripsie reguleerder van HBP-geïndiseerde ACCβ promotor regulering is. Samevattend het hierdie studie demonstreer dat verhoogde fluks deur die hexosamien biosintetiese weg ACCb geenpromotor aktiwiteit induseer. Ons stel verder voor dat hierdie induksie die kardiale vetsuuroksidasie verlaag wat daartoe lei dat intrasellulêre lipied akkumulasie as gevolg van onparing tussen sarkolemma vetsuuropname en mitochondriale vetsuuroksidasie in ’n insulien weerstandige situasie (i.e. hiperlipidaemia).
Faller, Kiterie Maud Edwige. „Application of magnetic resonance for non-invasive phenotyping of mice with altered metabolism“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:73d1b728-b9e5-41fa-999f-30025b70d25e.
Der volle Inhalt der QuelleWinter, James. „The linking of angiogenesis to contractile performance and substrate metabolism in the hypertrophied and failing heart“. Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1025/.
Der volle Inhalt der QuelleWilson, Heather Marion. „High density lipoprotein subspecies and the control of lipoprotein metabolism in relation to coronary heart disease“. Thesis, University of Aberdeen, 1990. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU031961.
Der volle Inhalt der QuelleSlingo, Mary Elizabeth. „The role of the hypoxia-inducible pathway in metabolism and cardiopulmonary physiology“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f674808e-6731-49e9-b838-1032875a2ced.
Der volle Inhalt der QuelleVánky, Farkas. „Surgery for aortic stenosis : with special reference to myocardial metabolism, postoperative heart failure and long-term outcome /“. Linköping : Linköpings universitet, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7471.
Der volle Inhalt der QuelleOkuda, Junji. „Persistent Overexpression of Phosphoglycerate Mutase, a Glycolytic Enzyme, Modifies Energy Metabolism and Reduces Stress Resistance of Heart in Mice“. Kyoto University, 2014. http://hdl.handle.net/2433/185197.
Der volle Inhalt der QuelleBeauchamp, Brittany. „Low Birth Weight is Associated with Impaired Skeletal and Cardiac Muscle Energetics in Adult Mice“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32963.
Der volle Inhalt der QuelleDodd, Michael S. „The development and application of new hyperpolarized magnetic resonance spectroscopy techniques for the non-invasive assessment of metabolism in the rodent heart“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:153b884e-b6dc-482e-bc48-7e6b9a457bbd.
Der volle Inhalt der QuelleWarner, Anke Sigrid. „The expression, regulation and effects of inducible nitric oxide synthase in hibernating myocardium“. Title page, contents and summary only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phw279.pdf.
Der volle Inhalt der QuelleDane-Stewart, Cheryl Ann. „Postprandial lipoprotein metabolism in patients at high risk of coronary artery disease : effects of statin therapy“. University of Western Australia. School of Medicine and Pharmacology, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0061.
Der volle Inhalt der QuelleVánky, Farkas. „Surgery for aortic stenosis : with special reference to myocardial metabolism, postoperative heart failure and long-term outcome“. Doctoral thesis, Linköpings universitet, Thoraxkirurgi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7471.
Der volle Inhalt der QuellePatel, Brinda. „The purification and metabolism of a mitochondrial high phosphate derivative oligophosphoglyceroyl-ATP, in rat heart and liver“. Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261193.
Der volle Inhalt der QuelleMahmod, Masliza. „Multiparametric cardiovascular magnetic resonance for the assessment of cardiac function and metabolism in hypertrophy and heart failure“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:ff24c167-e00d-4c6d-9809-82203979ba7a.
Der volle Inhalt der QuelleWild, Sarah Helen. „Mortality and morbidity from coronary heart disease, diabetes and hypertension in women with polycystic ovary syndrome at long-term follow-up“. Thesis, London School of Hygiene and Tropical Medicine (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367837.
Der volle Inhalt der QuelleMiller, Isabelle Sarton. „Estimation of energy expenditure in children : a simple and non-invasive approach using heart rate and regression modelling /“. Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6455.
Der volle Inhalt der Quelle