Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Headstock of horizontal machine tool“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Headstock of horizontal machine tool" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Headstock of horizontal machine tool"
Xu, Yakai, Weiguo Gao, Yuhan Yu, Dawei Zhang, Xiangsong Zhao, Yanling Tian und Huaying Cun. „Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method“. Shock and Vibration 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/2736545.
Der volle Inhalt der QuelleZhang, Yao Man, Qi Wei Liu und Jia Liang Han. „Finite Element Analysis on Thermal Characteristic of the Headstock of NC Machine Tool“. Advanced Materials Research 291-294 (Juli 2011): 2302–5. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.2302.
Der volle Inhalt der QuelleZhang, Yao Man, Jia Liang Han und Ren Jun Gu. „Thermal Characteristic Analysis on the Headstock of a High Precision CNC Machine Tool“. Applied Mechanics and Materials 201-202 (Oktober 2012): 157–61. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.157.
Der volle Inhalt der QuelleCheng, Feng Lan, und Feng He Wu. „Topology Optimization of Headstock of Heavy Machine Tool“. Advanced Materials Research 305 (Juli 2011): 442–45. http://dx.doi.org/10.4028/www.scientific.net/amr.305.442.
Der volle Inhalt der QuelleSang, Lu Ping. „Turning-Milling Machining Center of Each Axis Movement Principle and the Headstock Structure Analysis“. Advanced Materials Research 912-914 (April 2014): 878–81. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.878.
Der volle Inhalt der QuelleWang, Yahui, Ling Shi, Yiqi Dang, Shengkai Sun und Huipeng Zhang. „Application of the Headstock of CNC Boring Machine for Tractor Engine Cylinder Block Based on Multi-Objective Genetic Algorithm“. Applied Engineering in Agriculture 37, Nr. 2 (2021): 343–49. http://dx.doi.org/10.13031/aea.14459.
Der volle Inhalt der QuelleLi, Zhe, Song Zhang, Yan Chen, Peng Wang und Ai Rong Zhang. „Dynamic Characteristics Analysis for the Headstock of a Vertical Machining Center“. Materials Science Forum 836-837 (Januar 2016): 348–58. http://dx.doi.org/10.4028/www.scientific.net/msf.836-837.348.
Der volle Inhalt der QuelleSheng, Zhong Qi, Chang Chun Liu, Jian Yong Wang und Liang Dong. „Research on Thermal Characteristic and Thermal Compensation Technology of Spindle System of CNC Machine Tool“. Advanced Materials Research 490-495 (März 2012): 1595–99. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.1595.
Der volle Inhalt der QuelleBrecher, C. Prof, und M. Klatte. „Sensorischer Spindelstock zur Thermo-Korrektur*/Sensory headstock for thermo compensation“. wt Werkstattstechnik online 107, Nr. 07-08 (2017): 500–506. http://dx.doi.org/10.37544/1436-4980-2017-07-08-24.
Der volle Inhalt der QuelleSun, Guo Yan, Jian Hua Zhang, Hao Yang und Gang Li. „Modal Analysis of Artificial Granite Grinding Machine Tool Bed“. Advanced Materials Research 971-973 (Juni 2014): 573–76. http://dx.doi.org/10.4028/www.scientific.net/amr.971-973.573.
Der volle Inhalt der QuelleDissertationen zum Thema "Headstock of horizontal machine tool"
Lekeš, Petr. „Návrh a optimalizace tělesa vřeteníku pro obráběcí stroj“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444267.
Der volle Inhalt der QuelleVazovan, Ľubomír. „Vřeteník a naklápěcí hlava frézovacího multifunkčního obráběcího centra s vodorovnou osou vřetena“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402637.
Der volle Inhalt der QuellePavlíček, Alois. „Konstrukce horizontálního frézovacího a vyvrtávacího stroje“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231385.
Der volle Inhalt der QuelleLin, You Chen, und 林宥辰. „Thermal Characteristic Measurement and Thermal Management Analysis of a Horizontal Type Machine Tool“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/xkdpur.
Der volle Inhalt der Quelle國立勤益科技大學
冷凍空調系
105
With the of machine tool industry, machine tools will be developed toward high-speed, high precision machining and multi-tasking. On the other hand, machine tool coolers are the best strategy for thermal management in avoiding the thermal deformation for machine tools. However, due to energy efficient component s were raised in recent year, it’s a commonly-seen problem for improper selection for machine tool cooler only based on previous sizing experience. In this study, the temperature variation of built-in motor spindle through experimental method was examined and analyzes extensively during actual machining process under different ambient temperature for one year. After analyzing the field testing data, computer simulation for the cooling system of spindle has been conducted extensively to identify the better thermal management strategies. Besides, predictive model using regression analysis has been implemented comprehensively to analyze thermal behavior of spindle. The experimental results reveal that the machining loading is about 50-60% of rated loading and there is a strong relation between temperature variation of spindle and ambient temperature. The developed predictive model provides a reliable estimation for temperature deviation of spindle under different ambient temperature. It is a valuable information for selecting suitable machine tool cooler under different ambient temperature according to the experimental temperature data of spindle in each season.
Chen, Chih-Yen, und 陳治諺. „Analysis and Improvement Design of Thermal Deformation for a Four-Axis Horizontal Machine-Tool“. Thesis, 2012. http://ndltd.ncl.edu.tw/handle/auk22g.
Der volle Inhalt der Quelle國立虎尾科技大學
機械與電腦輔助工程系碩士班
100
Thermal deformation of the structure due to temperature rise in high-speed cutting process becomes a challenge that should be overcome at present for machine tools. In recent years, the technology of a real-time online thermal compensation system has been largely progressed. Although the positioning accuracy of a feed-drive system has been increased, but it still can not solve the issue of nonlinear thermal deformation of the structure. This project focuses on the study of thermal deformation within headstock, ball-screw and bearing in a four-axis horizontal machine-tool caused by heat source generation during high-speed operation. It tries to perform structure design of heat symmetry, heat isolation and cooling suppression. The goal is to achieve a heat balance structure, reduce the effect of thermal deformation on machining accuracy and promote the thermal stability of a machine tool structure. First of all, thermocouples and an infrared thermal imager were used to measure the temperature at some important locations of the spindle system and ball-screw after a long period of operation. The measured temperatures were used as the boundary conditions for numerical analysis. The heat transfer analysis was conducted for headstock, ball-screw and bearing by finite element method, and the temperature field and thermal deformation of these parts can thus be obtained. Then, heat isolation and cooling piping embedded design for headstock and bearing was conducted. The geometrical configuration and dimensions of this heat isolation structure and the setting location of the cooling pipes were modified constantly according to the analysis results from the repeated finite element simulation procedures. It is expected that the temperature distribution in a machine tool structure may reach equilibrium state and the impact of thermal deformation can be reduced. Additionally, a mechanical force was applied to this machine tool structure for numerical simulations of rigidity and strength. Finally, the numerical simulation analysis was performed to determine the deformation situation under the coupling action between both the mechanical and thermal loads. This analysis may reflect the machine tool structure under practical working conditions. The results show that the total displacement of headstock, ball-screw and bearing is mainly contributed from the thermal deformation. The structure design of heat symmetry and heat isolation can isolate the heat transfer effectively, and the accompanied cooling pipe system can remove the heat source quickly. The thermal deformation can thus be reduced. As a result, the stability and central positioning accuracy in each substructure can thus be maintained and the machine tool structure design fulfills the heat balance demand in industry.
Yang, Kai-Chieh, und 楊凱傑. „Development of an intelligent horizontal micro machine tool with high-frequency vibration assisted machining and research of nano milling-grinding on Zerodur® glass ceramic“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/4tzbnz.
Der volle Inhalt der QuelleBuchteile zum Thema "Headstock of horizontal machine tool"
GÖkler, M. I., H. Eskicioglu und H. BastÜrk. „Computer Aided Part Programme Generation for Manufacture of Horizontal Upset Forging Dies“. In Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference, 73–78. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08114-1_10.
Der volle Inhalt der QuelleXu, Xun. „CNC Machine Tools“. In Integrating Advanced Computer-Aided Design, Manufacturing, and Numerical Control, 165–87. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-59904-714-0.ch008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Headstock of horizontal machine tool"
Tian, Tian, Cao Yan, Jia Feng und Zhang Leiyan. „Simulation Analysis of Flow Field Based on Horizontal Electrolytic Machine Tool“. In Proceedings of the 2019 International Conference on Precision Machining, Non-Traditional Machining and Intelligent Manufacturing (PNTIM 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/pntim-19.2019.28.
Der volle Inhalt der QuelleGai, Yuxian, Huiying Liu und Shen Dong. „Vibration Control System for a Sub-Micro Ultra-Precision Turning Machine“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21040.
Der volle Inhalt der QuelleMourtzis, Dimitris. „Machine Tool 4.0 in the Era of Digital Manufacturing“. In The 32nd European Modeling & Simulation Symposium. CAL-TEK srl, 2020. http://dx.doi.org/10.46354/i3m.2020.emss.060.
Der volle Inhalt der QuelleDong, Huimin, Yang Tan, Delun Wang und Yali Ma. „Dynamic Characteristics of a Machine Tool at Working Positions in Operating Test“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48899.
Der volle Inhalt der QuelleGuo, Junkang, Jun Hong, Xiaopan Wu, Mengxi Wang und Yan Feng. „The Modeling and Prediction of Gravity Deformation in Precision Machine Tool Assembly“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63441.
Der volle Inhalt der QuelleGessner, Andrzej, und Roman Staniek. „Optimizing Machining of Machine Tool Casting Bodies by Means of Optical Scanning“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62841.
Der volle Inhalt der QuelleSmoli´k, Jan, Viktor Kuli´sˇek und Miroslav Janota. „Application of Sandwich-Based Designs on Main Structural Parts of Machine Tools“. In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50155.
Der volle Inhalt der QuelleYi, Xianzhong. „Tool Path Planning Algorithm of Normal Curvature Approach Milling Model for Freeform Surfaces“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/cie-21297.
Der volle Inhalt der QuelleHsu, Fu-Chuan, Cheng-Chang Chiu, Yu-Ting Lyu, Wen-Long Chang, Junz J. J. Wang, Yung-Yuan Liao und Steven Y. Liang. „Application of an Accuracy Enhancement Module for Precision Machine Tools by Spatial Error Compensation“. In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72177.
Der volle Inhalt der QuelleLiang, Lin, Ting Lei und Matthew Blyth. „AUTOMATIC LOGGING-WHILE-DRILLING DIPOLE SONIC SHEAR PROCESSING ENABLED BY PHYSICS-DRIVEN MACHINE LEARNING“. In 2021 SPWLA 62nd Annual Logging Symposium Online. Society of Petrophysicists and Well Log Analysts, 2021. http://dx.doi.org/10.30632/spwla-2021-0059.
Der volle Inhalt der Quelle