Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Head mesoderm.

Zeitschriftenartikel zum Thema „Head mesoderm“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Head mesoderm" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Yin, Z., X. L. Xu und M. Frasch. „Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development“. Development 124, Nr. 24 (15.12.1997): 4971–82. http://dx.doi.org/10.1242/dev.124.24.4971.

Der volle Inhalt der Quelle
Annotation:
The Drosophila tinman homeobox gene has a major role in early mesoderm patterning and determines the formation of visceral mesoderm, heart progenitors, specific somatic muscle precursors and glia-like mesodermal cells. These functions of tinman are reflected in its dynamic pattern of expression, which is characterized by initial widespread expression in the trunk mesoderm, then refinement to a broad dorsal mesodermal domain, and finally restricted expression in heart progenitors. Here we show that each of these phases of expression is driven by a discrete enhancer element, the first being active in the early mesoderm, the second in the dorsal mesoderm and the third in cardioblasts. We provide evidence that the early-active enhancer element is a direct target of twist, a gene encoding a basic helix-loop-helix (bHLH) protein, which is necessary for tinman activation. This 180 bp enhancer includes three E-box sequences which bind Twist protein in vitro and are essential for enhancer activity in vivo. Ectodermal misexpression of twist causes ectopic activation of this enhancer in ectodermal cells, indicating that twist is the only mesoderm-specific activator of early tinman expression. We further show that the 180 bp enhancer also includes negatively acting sequences. Binding of Even-skipped to these sequences appears to reduce twist-dependent activation in a periodic fashion, thus producing a striped tinman pattern in the early mesoderm. In addition, these sequences prevent activation of tinman by twist in a defined portion of the head mesoderm that gives rise to hemocytes. We find that this repression requires the function of buttonhead, a head-patterning gene, and that buttonhead is necessary for normal activation of the hematopoietic differentiation gene serpent in the same area. Together, our results show that tinman is controlled by an array of discrete enhancer elements that are activated successively by differential genetic inputs, as well as by closely linked activator and repressor binding sites within an early-acting enhancer, which restrict twist activity to specific areas within the twist expression domain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Noden, Drew M. „Interactions and fates of avian craniofacial mesenchyme“. Development 103, Supplement (01.09.1988): 121–40. http://dx.doi.org/10.1242/dev.103.supplement.121.

Der volle Inhalt der Quelle
Annotation:
Craniofacial mesenchyme is composed of three mesodermal populations – prechordal plate, lateral mesoderm and paraxial mesoderm, which includes the segmented occipital somites and the incompletely segmented somitomeres – and the neural crest. This paper outlines the fates of each of these, as determined using quail–chick chimaeras, and presents similarities and differences between these cephalic populations and their counterparts in the trunk. Prechordal and paraxial mesodermal populations are the sources of all voluntary muscles of the head. The latter also provides most of the connective precursors of the calvaria, occipital, otic–parietal and basisphenoid tissues. Lateral mesoderm is the source of peripharyngeal connective tissues; the most rostral skeletal tissues it forms are the laryngeal and tracheal cartilages. When migrating neural crest cells encounter segmented paraxial mesoderm (occipital and trunk somites), most move into the region between the dermamyotome and sclerotome in the cranial half of each somite. In contrast, most cephalic crest cells migrate superficial to somitomeres. There is, however, a small subpopulation of the head crest that invades somitomeric mesoderm. These cells subsequently segregate presumptive myogenic precursors of visceral arch voluntary muscles from underlying mesenchyme. In the neurula-stage avian embryo, all paraxial and lateral mesodermal populations contain precursors of vascular endothelial cells, which can be detected in chimaeric embryos using anti-quail endothelial antibodies. Some of these angioblasts differentiate in situ, contributing directly to pre-existing vessels or forming isolated, nonpatent, cords that subsequently vesiculate and fuse with nearby vessels. Many angioblasts migrate in all directions, invading embryonic mesenchymal and epithelial tissues and participating in new blood vessel formation in distant sites. The interactions leading to proper spatial patterning of craniofacial skeletal, muscular, vascular and peripheral neural tissues has been studied by performing heterotopic transplants of each of these mesodermal and neural crest populations. The results consistently indicate that connective tissue precursors, regardless of their origin, contain spatial information used by the precursors of muscles and blood vessels and by outgrowing peripheral nerves. Some of these connective tissue precursors (e.g. the neural crest, paraxial mesoderm) acquire their spatial programming while in association with the central nervous system or developing sensory epithelia (e.g. otic, optic, nasal epithelia).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kusch, T., und R. Reuter. „Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling“. Development 126, Nr. 18 (15.09.1999): 3991–4003. http://dx.doi.org/10.1242/dev.126.18.3991.

Der volle Inhalt der Quelle
Annotation:
The visceral musculature of the larval midgut of Drosophila has a lattice-type structure and consists of an inner stratum of circular fibers and an outer stratum of longitudinal fibers. The longitudinal fibers originate from the posterior tip of the mesoderm anlage, which has been termed the caudal visceral mesoderm (CVM). In this study, we investigate the specification of the CVM and particularly the role of the Drosophila Brachyury-homologue brachyenteron. Supported by fork head, brachyenteron mediates the early specification of the CVM along with zinc-finger homeodomain protein-1. This is the first function described for brachyenteron or fork head in the mesoderm of Drosophila. The mode of cooperation resembles the interaction of the Xenopus homologues Xbra and Pintallavis. Another function of brachyenteron is to establish the surface properties of the CVM cells, which are essential for their orderly migration along the trunk-derived visceral mesoderm. During this movement, the CVM cells, under the control of brachyenteron, induce the formation of one muscle/pericardial precursor cell in each parasegment. We propose that the functions of brachyenteron in mesodermal development of Drosophila are comparable to the roles of the vertebrate Brachyury genes during gastrulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yamamoto, A., S. L. Amacher, S. H. Kim, D. Geissert, C. B. Kimmel und E. M. De Robertis. „Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm“. Development 125, Nr. 17 (01.09.1998): 3389–97. http://dx.doi.org/10.1242/dev.125.17.3389.

Der volle Inhalt der Quelle
Annotation:
Zebrafish paraxial protocadherin (papc) encodes a transmembrane cell adhesion molecule (PAPC) expressed in trunk mesoderm undergoing morphogenesis. Microinjection studies with a dominant-negative secreted construct suggest that papc is required for proper dorsal convergence movements during gastrulation. Genetic studies show that papc is a close downstream target of spadetail, gene encoding a transcription factor required for mesodermal morphogenetic movements. Further, we show that the floating head homeobox gene is required in axial mesoderm to repress the expression of both spadetail and papc, promoting notochord and blocking differentiation of paraxial mesoderm. The PAPC structural cell-surface protein may provide a link between regulatory transcription factors and the actual cell biological behaviors that execute morphogenesis during gastrulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kofron, M., T. Demel, J. Xanthos, J. Lohr, B. Sun, H. Sive, S. Osada, C. Wright, C. Wylie und J. Heasman. „Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors“. Development 126, Nr. 24 (15.12.1999): 5759–70. http://dx.doi.org/10.1242/dev.126.24.5759.

Der volle Inhalt der Quelle
Annotation:
The maternal transcription factor VegT is important for establishing the primary germ layers in Xenopus. In previous work, we showed that the vegetal masses of embryos lacking maternal VegT do not produce mesoderm-inducing signals and that mesoderm formation in these embryos occurred ectopically, from the vegetal area rather than the equatorial zone of the blastula. Here we have increased the efficiency of the depletion of maternal VegT mRNA and have studied the effects on mesoderm formation. We find that maternal VegT is required for the formation of 90% of mesodermal tissue, as measured by the expression of mesodermal markers MyoD, cardiac actin, Xbra, Xwnt8 and alphaT4 globin. Furthermore, the transcription of FGFs and TGFbetas, Xnr1, Xnr2, Xnr4 and derriere does not occur in VegT-depleted embryos. We test whether these growth factors may be endogenous factors in mesoderm induction, by studying their ability to rescue the phenotype of VegT-depleted embryos, when their expression is restricted to the vegetal mass. We find that Xnr1, Xnr2, Xnr4 and derriere mRNA all rescue mesoderm formation, as well as the formation of blastopores and the wild-type body axis. Derriere rescues trunk and tail while nr1, nr2 and nr4 rescue head, trunk and tail. We conclude that mesoderm induction in Xenopus depends on a maternal transcription factor regulating these zygotic growth factors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Halpern, M. E., C. Thisse, R. K. Ho, B. Thisse, B. Riggleman, B. Trevarrow, E. S. Weinberg, J. H. Postlethwait und C. B. Kimmel. „Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants“. Development 121, Nr. 12 (01.12.1995): 4257–64. http://dx.doi.org/10.1242/dev.121.12.4257.

Der volle Inhalt der Quelle
Annotation:
Zebrafish floating head mutant embryos lack notochord and develop somitic muscle in its place. This may result from incorrect specification of the notochord domain at gastrulation, or from respecification of notochord progenitors to form muscle. In genetic mosaics, floating head acts cell autonomously. Transplanted wild-type cells differentiate into notochord in mutant hosts; however, cells from floating head mutant donors produce muscle rather than notochord in wild-type hosts. Consistent with respecification, markers of axial mesoderm are initially expressed in floating head mutant gastrulas, but expression does not persist. Axial cells also inappropriately express markers of paraxial mesoderm. Thus, single cells in the mutant midline transiently co-express genes that are normally specific to either axial or paraxial mesoderm. Since floating head mutants produce some floor plate in the ventral neural tube, midline mesoderm may also retain early signaling capabilities. Our results suggest that wild-type floating head provides an essential step in maintaining, rather than initiating, development of notochord-forming axial mesoderm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bodmer, R., L. Y. Jan und Y. N. Jan. „A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila“. Development 110, Nr. 3 (01.11.1990): 661–69. http://dx.doi.org/10.1242/dev.110.3.661.

Der volle Inhalt der Quelle
Annotation:
Many homeobox-containing genes of Drosophila regulate pathways of differentiation. These proteins probably function as promoter- or enhancer-selective transcription factors. We have isolated a new homeobox-containing gene, msh-2, by means of the polymerase chain reactions (PCR) using redundant primers. msh-2 is specifically expressed in mesodermal primordia during a short time period early in development. It first appears at blastoderm stage just before the ventral invagination of the mesoderm and shortly after twist, a gene required for mesoderm formation, is expressed. During germband elongation all the mesodermal cells in the segmented part of the embryo express msh-2, but soon afterwards msh-2 becomes restricted to the dorsal mesoderm, which includes the primordia for the visceral musculature and the heart. Prior to muscle differentiation, msh-2 expression ceases, except for two rows of cells that will be included in the dorsal vessel. Embryos that are deficient for the chromosomal region, 93C-F, which includes the msh-2 gene, show normal mesoderm invagination and dorsal spreading. However, later in development no visceral muscle and dorsal vessel differentiation can be detected, but some skeletal muscles do form, albeit abnormally. msh-2 expression, except for a patch in the head, is dependent on twist function. On the other hand, snail, another mesoderm determinant, does not appear to be required for msh-2 initiation, but is necessary for the maintenance of msh-2 expression after germband elongation. H2.0, a homeo-box-containing gene specifically expressed in visceral mesoderm, is not transcribed in the mesoderm in 93C-F deficiency embryos.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kessler, D. S., und D. A. Melton. „Induction of dorsal mesoderm by soluble, mature Vg1 protein“. Development 121, Nr. 7 (01.07.1995): 2155–64. http://dx.doi.org/10.1242/dev.121.7.2155.

Der volle Inhalt der Quelle
Annotation:
Mesoderm induction during Xenopus development has been extensively studied, and two members of the transforming growth factor-beta family, activin beta B and Vg1, have emerged as candidates for a natural inducer of dorsal mesoderm. Heretofore, analysis of Vg1 activity has relied on injection of hybrid Vg1 mRNAs, which have not been shown to direct efficient secretion of ligand and, therefore, the mechanism of mesoderm induction by processed Vg1 protein is unclear. This report describes injection of Xenopus oocytes with a chimeric activin-Vg1 mRNA, encoding the pro-region of activin beta B fused to the mature region of Vg1, resulting in the processing and secretion of mature Vg1. Treatment of animal pole explants with mature Vg1 protein resulted in differentiation of dorsal, but not ventral, mesodermal tissues and dose-dependent activation of both dorsal and ventrolateral mesodermal markers. At high doses, mature Vg1 induced formation of ‘embryoids’ with a rudimentary axial pattern, head structures including eyes and a functional neuromuscular system. Furthermore, truncated forms of the activin and FGF receptors, which block mesoderm induction in the intact embryo, fully inhibited mature Vg1 activity. To examine the mechanism of inhibition, we have performed receptor-binding assays with radiolabeled Vg1. Finally, follistatin, a specific inhibitor of activin beta B which is shown not to block endogenous dorsal mesoderm induction, failed to inhibit Vg1. The results support a role for endogenous Vg1 in dorsal mesoderm induction during Xenopus development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Amaya, E., P. A. Stein, T. J. Musci und M. W. Kirschner. „FGF signalling in the early specification of mesoderm in Xenopus“. Development 118, Nr. 2 (01.06.1993): 477–87. http://dx.doi.org/10.1242/dev.118.2.477.

Der volle Inhalt der Quelle
Annotation:
We have examined the role of FGF signalling in the development of muscle and notochord and in the expression of early mesodermal markers in Xenopus embryos. Disruption of the FGF signalling pathway by expression of a dominant negative construct of the FGF receptor (XFD) generally results in gastrulation defects that are later evident in the formation of the trunk and tail, though head structures are formed nearly normally. These defects are reflected in the loss of notochord and muscle. Even in embryos that show mild defects and gastrulate properly, muscle formation is impaired, suggesting that morphogenesis and tissue differentiation each depend on FGF. The XFD protein inhibits the expression of the immediate early gene brachyury throughout the marginal zone, including the dorsal side; it does not, however, inhibit the dorsal lip marker goosecoid, which is expressed in the first involuting mesoderm at the dorsal side that will underlie the head. The XFD protein also inhibits Xpo expression, an immediate early marker of ventral and lateral mesoderm. These results suggest that FGF is involved in the earliest events of most mesoderm induction that occur before gastrulation and that the early dorsal mesoderm is already composed of two cell populations that differ in their requirements for FGF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sun, B. I., S. M. Bush, L. A. Collins-Racie, E. R. LaVallie, E. A. DiBlasio-Smith, N. M. Wolfman, J. M. McCoy und H. L. Sive. „derriere: a TGF-beta family member required for posterior development in Xenopus“. Development 126, Nr. 7 (01.04.1999): 1467–82. http://dx.doi.org/10.1242/dev.126.7.1467.

Der volle Inhalt der Quelle
Annotation:
TGF-beta signaling plays a key role in induction of the Xenopus mesoderm and endoderm. Using a yeast-based selection scheme, we isolated derriere, a novel TGF-beta family member that is closely related to Vg1 and that is required for normal mesodermal patterning, particularly in posterior regions of the embryo. Unlike Vg1, derriere is expressed zygotically, with RNA localized to the future endoderm and mesoderm by late blastula, and to the posterior mesoderm by mid-gastrula. The derriere expression pattern appears to be identical to the zygotic expression domain of VegT (Xombi, Brat, Antipodean), and can be activated by VegT as well as fibroblast growth factor (FGF). In turn, derriere activates expression of itself, VegT and eFGF, suggesting that a regulatory loop exists between these genes. derriere is a potent mesoderm and endoderm inducer, acting in a dose-dependent fashion. When misexpressed ventrally, derriere induces a secondary axis lacking a head, an effect that is due to dorsalization of the ventral marginal zone. When misexpressed dorsally, derriere suppresses head formation. derriere can also posteriorize neurectoderm, but appears to do so indirectly. Together, these data suggest that derriere expression is compatible only with posterior fates. In order to assess the in vivo function of derriere, we constructed a dominant interfering Derriere protein (Cm-Derriere), which preferentially blocks Derriere activity relative to that of other TGFbeta family members. Cm-derriere expression in embryos leads to posterior truncation, including defects in blastopore lip formation, gastrulation and neural tube closure. Normal expression of anterior and hindbrain markers is observed; however, paraxial mesodermal gene expression is ablated. This phenotype can be rescued by wild-type derriere and by VegT. Our findings indicate that derriere plays a crucial role in mesodermal patterning and development of posterior regions in Xenopus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Cornell, R. A., und D. Kimelman. „Activin-mediated mesoderm induction requires FGF“. Development 120, Nr. 2 (01.02.1994): 453–62. http://dx.doi.org/10.1242/dev.120.2.453.

Der volle Inhalt der Quelle
Annotation:
The early patterning of mesoderm in the Xenopus embryo requires signals from several intercellular factors, including mesoderm-inducing agents that belong to the fibroblast growth factor (FGF) and TGF-beta families. In animal hemisphere explants (animal caps), basic FGF and the TGF-beta family member activin are capable of converting pre-ectodermal cells to a mesodermal fate, although activin is much more effective at inducing dorsal and anterior mesoderm than is basic FGF. Using a dominant-negative form of the Xenopus type 1 FGF receptor, we show that an FGF signal is required for the full induction of mesoderm by activin. Animal caps isolated from embryos that have been injected with the truncated FGF receptor and cultured with activin do not extend and the induction of some genes, including cardiac actin and Xbra, is greatly diminished, while the induction of other genes, including the head organizer-specific genes gsc and Xlim-1, is less sensitive. These results are consistent with the phenotype of the truncated FGF receptor-injected embryo and imply that the activin induction of mesoderm depends on FGF, with some genes requiring a higher level of FGF signaling than others.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Jouve, Caroline, Tadahiro Iimura und Olivier Pourquie. „Onset of the segmentation clock in the chick embryo: evidence for oscillations in the somite precursors in the primitive streak“. Development 129, Nr. 5 (01.03.2002): 1107–17. http://dx.doi.org/10.1242/dev.129.5.1107.

Der volle Inhalt der Quelle
Annotation:
Vertebrate somitogenesis is associated with a molecular oscillator, the segmentation clock, which is defined by the periodic expression of genes related to the Notch pathway such as hairy1 and hairy2 or lunatic fringe (referred to as the cyclic genes) in the presomitic mesoderm (PSM). Whereas earlier studies describing the periodic expression of these genes have essentially focussed on later stages of somitogenesis, we have analysed the onset of the dynamic expression of these genes during chick gastrulation until formation of the first somite. We observed that the onset of the dynamic expression of the cyclic genes in chick correlated with ingression of the paraxial mesoderm territory from the epiblast into the primitive streak. Production of the paraxial mesoderm from the primitive streak is a continuous process starting with head mesoderm formation, while the streak is still extending rostrally, followed by somitic mesoderm production when the streak begins its regression. We show that head mesoderm formation is associated with only two pulses of cyclic gene expression. Because such pulses are associated with segment production at the body level, it suggests the existence of, at most, two segments in the head mesoderm. This is in marked contrast to classical models of head segmentation that propose the existence of more than five segments. Furthermore, oscillations of the cyclic genes are seen in the rostral primitive streak, which contains stem cells from which the entire paraxial mesoderm originates. This indicates that the number of oscillations experienced by somitic cells is correlated with their position along the AP axis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bothe, I., G. Tenin, A. Oseni und S. Dietrich. „Dynamic control of head mesoderm patterning“. Development 138, Nr. 13 (07.06.2011): 2807–21. http://dx.doi.org/10.1242/dev.062737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

del Corral, Ruth Diez, Dorette N. Breitkreuz und Kate G. Storey. „Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling“. Development 129, Nr. 7 (01.04.2002): 1681–91. http://dx.doi.org/10.1242/dev.129.7.1681.

Der volle Inhalt der Quelle
Annotation:
While many neuronal differentiation genes have been identified, we know little about what determines when and where neurons will form and how this process is coordinated with the differentiation of neighbouring tissues. In most vertebrates the onset of neuronal differentiation takes place in the spinal cord in a head to tail sequence. Here we demonstrate that the changing signalling properties of the adjacent paraxial mesoderm control the progression of neurogenesis in the chick spinal cord. We find an inverse relationship between the expression of caudal neural genes in the prospective spinal cord, which is maintained by underlying presomitic mesoderm and FGF signalling, and neuronal differentiation, which is repressed by such signals and accelerated by somitic mesoderm. We show that key to this interaction is the ability of somitic mesoderm to repress Fgf8 transcription in the prospective spinal cord. Our findings further indicate that attenuation of FGF signalling in the prospective spinal cord is a prerequisite for the onset of neuronal differentiation and may also help to resolve mesodermal and neural cell fates. However, inhibition of FGF signalling alone does not promote the formation of neurons, which requires still further somite signalling. We propose a model in which signalling from somitic tissue promotes the differentiation of the spinal cord and serves to co-ordinate neural and mesodermal development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kimmel, Charles B., Diane S. Sepich und Bill Trevarrow. „Development of segmentation in zebrafish“. Development 104, Supplement (01.10.1988): 197–207. http://dx.doi.org/10.1242/dev.104.supplement.197.

Der volle Inhalt der Quelle
Annotation:
Recent findings on the nature and origin of segmentation in zebrafish, Brachydanio rerio, are reviewed. Segmented peripheral tissues include the trunk and tail myotomes, that are derived from somitic mesoderm, and the pharyngeal arches that are derived from head mesoderm in addition to other sources. Two major regions of the central nervous system, the spinal cord and hindbrain, are also segmentally organized, as deduced from the distribution of identified neurones in both regions and by formation of neuromeres in the hindbrain that contain single sets of these neurones. Neural and mesodermal segments in the same body region can be related to one another by their patterns of motor innervation. This relationship is simple for the spinal/myotomal segments and complex for the hindbrain/pharyngeal arch segments. Development of the segments is also complex. Mesodermal and ectodermal progenitors have separate embryonic origins and indeterminate cell lineages, and the embryonic cells migrate extensively before reaching their definitive segmental positions. Results of heat-shock experiments suggest that development of myotomal and spinal segments are regulated coordinately in postgastrula embryos. Segmental patterning may be a relatively late feature of zebrafish embryonic development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kinder, Simon J., Tania E. Tsang, Maki Wakamiya, Hiroshi Sasaki, Richard R. Behringer, Andras Nagy und Patrick P. L. Tam. „The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm“. Development 128, Nr. 18 (15.09.2001): 3623–34. http://dx.doi.org/10.1242/dev.128.18.3623.

Der volle Inhalt der Quelle
Annotation:
An organizer population has been identified in the anterior end of the primitive streak of the mid-streak stage embryo, by the expression of Hnf3β, GsclacZ and Chrd, and the ability of these cells to induce a second neural axis in the host embryo. This cell population can therefore be regarded as the mid-gastrula organizer and, together with the early-gastrula organizer and the node, constitute the organizer of the mouse embryo at successive stages of development. The profile of genetic activity and the tissue contribution by cells in the organizer change during gastrulation, suggesting that the organizer may be populated by a succession of cell populations with different fates. Fine mapping of the epiblast in the posterior region of the early-streak stage embryo reveals that although the early-gastrula organizer contains cells that give rise to the axial mesoderm, the bulk of the progenitors of the head process and the notochord are localized outside the early gastrula organizer. In the mid-gastrula organizer, early gastrula organizer derived cells that are fated for the prechordal mesoderm are joined by the progenitors of the head process that are recruited from the epiblast previously anterior to the early gastrula organizer. Cells that are fated for the head process move anteriorly from the mid-gastrula organizer in a tight column along the midline of the embryo. Other mid-gastrula organizer cells join the expanding mesodermal layer and colonize the cranial and heart mesoderm. Progenitors of the trunk notochord that are localized in the anterior primitive streak of the mid-streak stage embryo are later incorporated into the node. The gastrula organizer is therefore composed of a constantly changing population of cells that are allocated to different parts of the axial mesoderm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Couly, G. F., P. M. Coltey und N. M. Le Douarin. „The developmental fate of the cephalic mesoderm in quail-chick chimeras“. Development 114, Nr. 1 (01.01.1992): 1–15. http://dx.doi.org/10.1242/dev.114.1.1.

Der volle Inhalt der Quelle
Annotation:
The developmental fate of the cephalic paraxial and prechordal mesoderm at the late neurula stage (3-somite) in the avian embryo has been investigated by using the isotopic, isochronic substitution technique between quail and chick embryos. The territories involved in the operation were especially tiny and the size of the transplants was of about 150 by 50 to 60 microns. At that stage, the neural crest cells have not yet started migrating and the fate of mesodermal cells exclusively was under scrutiny. The prechordal mesoderm was found to give rise to the following ocular muscles: musculus rectus ventralis and medialis and musculus oblicus ventralis. The paraxial mesoderm was separated in two longitudinal bands: one median, lying upon the cephalic vesicles (median paraxial mesoderm—MPM); one lateral, lying upon the foregut (lateral paraxial mesoderm—LPM). The former yields the three other ocular muscles, contributes to mesencephalic meninges and has essentially skeletogenic potencies. It contributes to the corpus sphenoid bone, the orbitosphenoid bone and the otic capsules; the rest of the facial skeleton is of neural crest origin. At 3-somite stage, MPM is represented by a few cells only. The LPM is more abundant at that stage and has essentially myogenic potencies with also some contribution to connective tissue. However, most of the connective cells associated with the facial and hypobranchial muscles are of neural crest origin. The more important result of this work was to show that the cephalic mesoderm does not form dermis. This function is taken over by neural crest cells, which form both the skeleton and dermis of the face. If one draws a parallel between the so-called “somitomeres” of the head and the trunk somites, it appears that skeletogenic potencies are reduced in the former, which in contrast have kept their myogenic capacities, whilst the formation of skeleton and dermis has been essentially taken over by the neural crest in the course of evolution of the vertebrate head.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Nandkishore, Nitya, Bhakti Vyas, Alok Javali und Ramkumar Sambasivan. „Axial polarization cues impinge on early mesoderm patterning and specify vertebrate head mesoderm“. Mechanisms of Development 145 (Juli 2017): S19. http://dx.doi.org/10.1016/j.mod.2017.04.579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Choe, Chong Pyo, Megan Matsutani und Gage D. Crump. „Mesodermal Wnt4a signaling regulates segmentation of head mesoderm and pharyngeal endoderm in zebrafish“. Developmental Biology 331, Nr. 2 (Juli 2009): 525. http://dx.doi.org/10.1016/j.ydbio.2009.05.517.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Noden, D. M. „Origins and patterning of avian outflow tract endocardium“. Development 111, Nr. 4 (01.04.1991): 867–76. http://dx.doi.org/10.1242/dev.111.4.867.

Der volle Inhalt der Quelle
Annotation:
Outflow tract endocardium links the atrioventricular lining, which develops from cardiogenic plate mesoderm, with aortic arches, whose lining forms collectively from splanchnopleuric endothelial channels, local endothelial vesicles, and invasive angioblasts. At two discrete sites, outflow tract endocardial cells participate in morphogenetic events not within the repertoire of neighboring endocardium: they form mesenchymal precursors of endocardial cushions. The objectives of this research were to document the history of outflow tract endocardium in the avian embryo immediately prior to development of the heart, and to ascertain which, if any, aspects of this history are necessary to acquire cushion-forming potential. Paraxial and lateral mesodermal tissues from between somitomere 3 (midbrain level) and somite 5 were grafted from quail into chick embryos at 3–10 somite stages and, after 2–5 days incubation, survivors were fixed and sectioned. Tissues were stained with the Feulgen reaction to visualize the quail nuclear marker or with antibodies (monoclonal QH1 or polyclonals) that recognize quail but not chick cells. Many quail endothelial cells lose the characteristic nuclear heterochromatin marker, but they retain the species-specific epitope recognized by these antibodies. Precursors of outflow tract but not atrioventricular endocardium are present in cephalic paraxial and lateral mesoderm, with their greatest concentration at the level of the otic placode. Furthermore, the ventral movement of individual angiogenic cells is a normal antecedent to outflow tract formation. Cardiac myocytes were never derived from grafted head mesoderm. Thus, unlike the atrioventricular regions of the heart, outflow tract endocardial and myocardial precursors do not share a congruent embryonic history. The results of heterotopic transplantation, in which trunk paraxial or lateral mesoderm was grafted into the head, were identical, including the formation of cushion mesenchyme. This means that cushion positioning and inductive influences must operate locally within the developing heart tubes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Tepass, U., L. I. Fessler, A. Aziz und V. Hartenstein. „Embryonic origin of hemocytes and their relationship to cell death in Drosophila“. Development 120, Nr. 7 (01.07.1994): 1829–37. http://dx.doi.org/10.1242/dev.120.7.1829.

Der volle Inhalt der Quelle
Annotation:
We have studied the embryonic development of Drosophila hemocytes and their conversion into macrophages. Hemocytes derive exclusively from the mesoderm of the head and disperse along several invariant migratory paths throughout the embryo. The origin of hemocytes from the head mesoderm is further supported by the finding that in Bicaudal D, a mutation that lacks all head structures, and in twist snail double mutants, where no mesoderm develops, hemocytes do not form. All embryonic hemocytes behave like a homogenous population with respect to their potential for phagocytosis. Thus, in the wild type, about 80–90% of hemocytes become macrophages during late development. In mutations with an increased amount of cell death (knirps; stardust; fork head), this figure approaches 100%. In contrast, in these mutations, the absolute number of hemocytes does not differ from that in wild type, indicating that cell death does not ‘induce’ the formation of hemocytes. Finally, we show that, in the Drosophila embryo, apoptosis can occur independently of macrophages, since mutations lacking macrophages (Bicaudal D; twist snail double mutants; torso4021) show abundant cell death.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Candia, A. F., J. Hu, J. Crosby, P. A. Lalley, D. Noden, J. H. Nadeau und C. V. Wright. „Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos“. Development 116, Nr. 4 (01.12.1992): 1123–36. http://dx.doi.org/10.1242/dev.116.4.1123.

Der volle Inhalt der Quelle
Annotation:
We have isolated two mouse genes, Mox-1 and Mox-2 that, by sequence, genomic structure and expression pattern, define a novel homeobox gene family probably involved in mesodermal regionalization and somitic differentiation. Mox-1 is genetically linked to the keratin and Hox-2 genes of chromosome 11, while Mox-2 maps to chromosome 12. At primitive streak stages (approximately 7.0 days post coitum), Mox-1 is expressed in mesoderm lying posterior of the future primordial head and heart. It is not expressed in neural tissue, ectoderm, or endoderm. Mox-1 expression may therefore define an extensive ‘posterior’ domain of embryonic mesoderm before, or at the earliest stages of, patterning of the mesoderm and neuroectoderm by the Hox cluster genes. Between 7.5 and 9.5 days post coitum, Mox-1 is expressed in presomitic mesoderm, epithelial and differentiating somites (dermatome, myotome and sclerotome) and in lateral plate mesoderm. In the body of midgestation embryos, Mox-1 signal is restricted to loose undifferentiated mesenchyme. Mox-1 signal is also prominent over the mesenchyme of the heart cushions and truncus arteriosus, which arises from epithelial-mesenchymal transformation and over a limited number of craniofacial foci of neural crest-derived mesenchyme that are associated with muscle attachment sites. The expression profile of Mox-2 is similar to, but different from, that of Mox-1. For example, Mox-2 is apparently not expressed before somites form, is then expressed over the entire epithelial somite, but during somitic differentiation, Mox-2 signal rapidly becomes restricted to sclerotomal derivatives. The expression patterns of these genes suggest regulatory roles for Mox-1 and Mox-2 in the initial anterior-posterior regionalization of vertebrate embryonic mesoderm and, in addition, in somite specification and differentiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Beddington, R. S. P., P. Rashbass und V. Wilson. „Brachyury - a gene affecting mouse gastrulation and early organogenesis“. Development 116, Supplement (01.04.1992): 157–65. http://dx.doi.org/10.1242/dev.116.supplement.157.

Der volle Inhalt der Quelle
Annotation:
Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Jacobson, Antone G. „Somitomeres: mesodermal segments of vertebrate embryos“. Development 104, Supplement (01.10.1988): 209–20. http://dx.doi.org/10.1242/dev.104.supplement.209.

Der volle Inhalt der Quelle
Annotation:
Well before the somites form, the paraxial mesoderm of vertebrate embryos is segmented into somitomeres. When newly formed, somitomeres are patterned arrays of mesenchymal cells, arranged into squat, bilaminar discs. The dorsal and ventral faces of these discs are composed of concentric rings of cells. Somitomeres are formed along the length of the embryo during gastrulation, and in the segmental plate and tail bud at later stages. They form in strict cranial to caudal order. They appear in bilateral pairs, just lateral to Hensen's node in the chick embryo. When the nervous system begins to form, the brain parts and neuromeres are in a consistent relationship to the somitomeres. Somitomeres first appear in the head, and the cranial somitomeres do not become somites, but disperse to contribute to the head the same cell types contributed by somites in the trunk region. In the trunk and tail, somitomeres gradually condense and epithelialize to become somites. Models of vertebrate segmentation must now take into account the early presence of these new morphological units, the somitomeres. Somitomeres were discovered in the head of the chick embryo (Meier, 1979), with the use of stereo scanning electron microscopy. The old question of whether the heads of the craniates are segmented is now settled, at least for the paraxial mesoderm. Somitomeres have now been identified in the embryos of a chick, quail, mouse, snapping turtle, newt, anuran (Xenopus) and a teleost (the medaka). In all forms studied, the first pair of somitomeres abut the prosencephalon but caudal to that, for each tandem pair of somitomeres in the amniote and teleost, there is but one somitomere in the amphibia. The mesodermal segments of the shark embryo are arranged like those of the amphibia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Couly, G. F., P. M. Coltey und N. M. Le Douarin. „The triple origin of skull in higher vertebrates: a study in quail-chick chimeras“. Development 117, Nr. 2 (01.02.1993): 409–29. http://dx.doi.org/10.1242/dev.117.2.409.

Der volle Inhalt der Quelle
Annotation:
We have used the quail-chick chimera technique to study the origin of the bones of the skull in the avian embryo. Although the contribution of the neural crest to the facial and visceral skeleton had been established previously, the origin of the vault of the skull (i.e. frontal and parietal bones) remained uncertain. Moreover formation of the occipito-otic region from either the somitic or the cephalic paraxial mesoderm had not been experimentally investigated. The data obtained in the present and previous works now allow us to assign a precise embryonic origin from either the mesectoderm, the paraxial cephalic mesoderm or the five first somites, to all the bones forming the avian skull. We distinguish a skull located in front of the extreme tip of the notochord which reaches the sella turcica and a skull located caudally to this boundary. The former ('prechordal skull') is derived entirely from the neural crest, the latter from the mesoderm (cephalic or somitic) in its ventromedial part ('chordal skull') and from the crest for the parietal bone and for part of the otic region. An important point enlighten in this work concerns the double origin of the corpus of the sphenoid in which basipresphenoid is of neural crest origin and the basipostsphenoid is formed by the cephalic mesoderm. Formation of the occipito-otic region of the skeleton is particularly complex and involves the cooperation of the five first somites and the paraxial mesoderm at the hind-brain level. The morphogenetic movements leading to the initial puzzle assembly could be visualized in a reproducible way by means of small grafts of quail mesodermal areas into chick embryos. The data reported here are discussed in the evolutionary context of the ‘New Head’ hypothesis of Gans and Northcutt (1983, Science, 220, 268–274).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mootoosamy, Roy C., und Susanne Dietrich. „Distinct regulatory cascades for head and trunk myogenesis“. Development 129, Nr. 3 (01.02.2002): 573–83. http://dx.doi.org/10.1242/dev.129.3.573.

Der volle Inhalt der Quelle
Annotation:
Most head muscles arise from the pre-otic axial and paraxial head mesoderm. This tissue does not form somites, yet expresses the somitic markers Lbx1, Pax7 and Paraxis in a regionalised fashion. The domain set aside by these markers provides the lateral rectus muscle, the most caudal of the extrinsic eye muscles. In contrast to somitic cells that express Lbx1, lateral rectus precursors are non-migratory. Moreover, the set of markers characteristic for the lateral rectus precursors differs from the marker sets indicative of somitic muscle precursors. This suggests distinct roles for Lbx1/Pax7/Paraxis in the development of head and trunk muscles. When grafted to the trunk, the pre-otic head mesoderm fails to activate Lbx1, Pax7 or Paraxis. Likewise, somites grafted into the region of the lateral rectus precursors fail to activate the lateral rectus marker set. This suggests that distinct regulatory cascades act in the development of trunk and head muscles, possibly reflecting their distinct function and evolution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Renucci, A., V. Lemarchandel und F. Rosa. „An activated form of type I serine/threonine kinase receptor TARAM-A reveals a specific signalling pathway involved in fish head organiser formation“. Development 122, Nr. 12 (01.12.1996): 3735–43. http://dx.doi.org/10.1242/dev.122.12.3735.

Der volle Inhalt der Quelle
Annotation:
The role of Transforming Growth Factor beta (TGF-beta)-related molecules in axis formation and mesoderm patterning in vertebrates has been extensively documented, but the identity and mechanisms of action of the endogenous molecules remained uncertain. In this study, we isolate a novel serine/threonine kinase type I receptor, TARAM-A, expressed during early zebrafish embryogenesis first ubiquitously and then restricted to dorsal mesoderm during gastrulation. A constitutive form of the receptor is able to induce the most anterior dorsal mesoderm rapidly and to confer an anterior organizing activity. By contrast, the wild-type form is only able to induce a local expansion of the dorsal mesoderm. Thus an activated form of TARAM-A is sufficient to induce dorsoanterior structures and TARAM-A may be activated by dorsally localized signals. Our data suggest the existence in fish of a specific TGF-beta-related pathway for anterior dorsal mesoderm induction, possibly mediated by TARAM-A and activated at the late blastula stage by localized dorsal determinant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lescroart, Fabienne, Wissam Hamou, Alexandre Francou, Magali Théveniau-Ruissy, Robert G. Kelly und Margaret Buckingham. „Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium“. Proceedings of the National Academy of Sciences 112, Nr. 5 (20.01.2015): 1446–51. http://dx.doi.org/10.1073/pnas.1424538112.

Der volle Inhalt der Quelle
Annotation:
Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Amacher, S. L., und C. B. Kimmel. „Promoting notochord fate and repressing muscle development in zebrafish axial mesoderm“. Development 125, Nr. 8 (15.04.1998): 1397–406. http://dx.doi.org/10.1242/dev.125.8.1397.

Der volle Inhalt der Quelle
Annotation:
Cell fate decisions in early embryonic cells are controlled by interactions among developmental regulatory genes. Zebrafish floating head mutants lack a notochord; instead, muscle forms under the neural tube. As shown previously, axial mesoderm in floating head mutant gastrulae fails to maintain expression of notochord genes and instead expresses muscle genes. Zebrafish spadetail mutant gastrulae have a nearly opposite phenotype; notochord markers are expressed in a wider domain than in wild-type embryos and muscle marker expression is absent. We examined whether these two phenotypes revealed an antagonistic genetic interaction by constructing the double mutant. Muscle does not form in the spadetail;floating head double mutant midline, indicating that spadetail function is required for floating head mutant axial mesoderm to transfate to muscle. Instead, the midline of spadetail;floating head double mutants is greatly restored compared to that of floating head mutants; the floor plate is almost complete and an anterior notochord develops. In addition, we find that floating head mutant cells can make both anterior and posterior notochord when transplanted into a wild-type host, showing that enviromental signals can override the predisposition of floating head mutant midline cells to make muscle. Taken together, these results suggest that repression of spadetail function by floating head is critical to promote notochord fate and prevent midline muscle development, and that cells can be recruited to the notochord by environmental signals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Dale, L., J. C. Smith und J. M. W. Slack. „Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies“. Development 89, Nr. 1 (01.10.1985): 289–312. http://dx.doi.org/10.1242/dev.89.1.289.

Der volle Inhalt der Quelle
Annotation:
We have compared the development of the animal pole (AP) region of early Xenopus embryos in normal development, in isolation, and in combination with explants of tissue from the vegetal pole (VP) region. For the grafts and the combinations the animal pole tissue was lineage labelled with FLDx in order to ascertain the provenance of the structures formed. The normal fate of the AP region was determined by orthotopic grafts at stages 7½ (early blastula), 8 (mid blastula) and 10 (early gastrula). At later stages most of the labelled cells were found in ectodermal tissues such as epidermis, head mesenchyme and neural tube (the last from stages 7½ and 8 only). However, in stage-7½ and stage-8 grafts some of the labelled cells were also found in the myotomes and lateral mesoderm. In isolated explants the AP region of all three stages differentiated only as epidermis assessed both histologically and by immunofluorescence using an antibody to epidermal keratin. The fate of labelled cells in AP-VP combinations was quite different and confirms the reality of mesoderm induction. In combinations made at stages 7½ and 8 the proportion of AP-derived mesoderm is substantially greater than the proportion of labelled mesoderm in the equivalent fate mapping experiments. This shows that the formation of mesoderm in such combinations is the result of an instructive rather than a permissive interaction. The formation of mesodermal tissues in stage-7½ combinations was confirmed by using a panel of antibodies which react with particular tissues in normal tailbud-stage embryos: anti-keratan sulphate for the notochord, anti-myosin for the muscle and anti-keratin for epidermis and notochord. Combinations made at stage 10 gave no positive cases and reciprocal heterochronic combinations between stages 7½ and 10 showed that this is the result of a loss of competence by the stage-10 AP tissue. Whereas stage-7½ AP tissue combined with stage-10 VP tissue gave many positive cases, the reciprocal experiment gave only a few. We have also tested the regional specificity of the induction. Stage-7½ vegetal pole explants were divided into dorsal and ventral regions and then combined, separately, with stage-7½ animal poles. The dorsovegetal tissue induces ‘dorsal-type’ mesoderm (notochord and large muscle masses) while ventrovegetal tissue induces ‘ventral-type’ mesoderm (blood, mesothelium and a little muscle). We conclude that mesoderm formation in combinations is an instructive event and propose a double gradient model to explain the complex character of the response.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Doniach, Tabitha. „Induction of anteroposterior neural pattern in Xenopus by planar signals“. Development 116, Supplement (01.04.1992): 183–93. http://dx.doi.org/10.1242/dev.116.supplement.183.

Der volle Inhalt der Quelle
Annotation:
Neural pattern in vertebrates has been thought to be induced in dorsal ectoderm by ‘vertical’ signals from underlying, patterned dorsal mesoderm. In the frog Xenopus laevis, it has recently been found that general neural differentiation and some pattern can be induced by ‘planar’ signals, i.e. those passing through the single plane formed by dorsal mesoderm and ectoderm, without the need for vertical interactions. Results in this paper, using the frog Xenopus laevis, indicate that four position-specific neural markers (the homeobox genes engrailed-2(en-2), XlHbox1 and XlHbox6 and the zincfinger gene Krox-20) are expressed in planar explants of orsal mesoderm and ectoderm (‘Keller explants’), in the same anteroposterior order as that in intact embryos. These genes are expressed regardless of convergent extension of the neurectoderm, and in the absence of head mesoderm. In addition, en-2 and XlHbox1 are not expressed in ectoderm when mesoderm is absent, but they and XlHbox6 are expressed in naive, ventral ectoderm which has had only planar contact with dorsal mesoderm. en-2 expression can be induced ectopically, in ectoderm far anterior to the region normally fated to express it, suggesting that a prepattem is not required to determine where it is expressed. Finally, the mesoderm in planar explants expresses en-2 and XlHbox1 in an appropriate regional manner, indicating that A-P pattern in the mesoderm does not require vertical contact with ectoderm. Overall, these results indicate that anteroposterior neural pattern can be induced in ectoderm soley by planar signals from the mesoderm. Models for the induction of anteroposterior neural pattern by planar and vertical signals are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Huang, R., Q. Zhi, K. Patel, J. Wilting und B. Christ. „Dual origin and segmental organisation of the avian scapula“. Development 127, Nr. 17 (01.09.2000): 3789–94. http://dx.doi.org/10.1242/dev.127.17.3789.

Der volle Inhalt der Quelle
Annotation:
Bones of the postcranial skeleton of higher vertebrates originate from either somitic mesoderm or somatopleural layer of the lateral plate mesoderm. Controversy surrounds the origin of the scapula, a major component of the shoulder girdle, with both somitic and lateral plate origins being proposed. Abnormal scapular development has been described in the naturally occurring undulated series of mouse mutants, which has implicated Pax1 in the formation of this bone. Here we addressed the development of the scapula, firstly, by analysing the relationship between Pax1 expression and chondrogenesis and, secondly, by determining the developmental origin of the scapula using chick quail chimeric analysis. We show the following. (1) The scapula develops in a rostral-to-caudal direction and overt chondrification is preceded by an accumulation of Pax1-expressing cells. (2) The scapular head and neck are of lateral plate mesodermal origin. (3) In contrast, the scapular blade is composed of somitic cells. (4) Unlike the Pax1-positive cells of the vertebral column, which are of sclerotomal origin, the Pax1-positive cells of the scapular blade originate from the dermomyotome. (5) Finally, we show that cells of the scapular blade are organised into spatially restricted domains along its rostrocaudal axis in the same order as the somites from which they originated. Our results imply that the scapular blade is an ossifying muscular insertion rather than an original skeletal element, and that the scapular head and neck are homologous to the ‘true coracoid’ of higher vertebrates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hacker, A., und S. Guthrie. „A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo“. Development 125, Nr. 17 (01.09.1998): 3461–72. http://dx.doi.org/10.1242/dev.125.17.3461.

Der volle Inhalt der Quelle
Annotation:
Cells of the cranial paraxial mesoderm give rise to parts of the skull and muscles of the head. Some mesoderm cells migrate from locations close to the hindbrain into the branchial arches where they undergo muscle differentiation. We have characterised these migratory pathways in chick embryos either by DiI-labelling cells before migration or by grafting quail cranial paraxial mesoderm orthotopically. These experiments demonstrate that depending on their initial rostrocaudal position, cranial paraxial mesoderm cells migrate to fill the core of specific branchial arches. A survey of the expression of myogenic genes showed that the myogenic markers Myf5, MyoD and myogenin were expressed in branchial arch muscle, but at comparatively late stages compared with their expression in the somites. Pax3 was not expressed by myogenic cells that migrate into the branchial arches despite its expression in migrating precursors of limb muscles. In order to test whether segmental plate or somitic mesoderm has the ability to migrate in a cranial location, we grafted quail trunk mesoderm into the cranial paraxial mesoderm region. While segmental plate mesoderm cells did not migrate into the branchial arches, somitic cells were capable of migrating and were incorporated into the branchial arch muscle mass. Grafted somitic cells in the vicinity of the neural tube maintained expression of the somitic markers Pax3, MyoD and Pax1. By contrast, ectopic somitic cells located distal to the neural tube and in the branchial arches did not express Pax3. These data imply that signals in the vicinity of the hindbrain and branchial arches act on migrating myogenic cells to influence their gene expression and developmental pathways.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Osada, S. I., und C. V. Wright. „Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis“. Development 126, Nr. 14 (15.07.1999): 3229–40. http://dx.doi.org/10.1242/dev.126.14.3229.

Der volle Inhalt der Quelle
Annotation:
Previously, we showed that Xenopus nodal-related factors (Xnrs) can act as mesoderm inducers, and that activin induces Xnr transcription, suggesting that Xnrs relay or maintain induction processes initiated by activin-like molecules. We used a dominant negative cleavage mutant Xnr2 (cmXnr2) to carry out loss-of-function experiments to explore the requirement for Xnr signaling in early amphibian embryogenesis, and the relationship between activin and Xnrs. cmXnr2 blocked mesoderm induction caused by Xnr, but not activin, RNA. In contrast, cmXnr2 did suppress mesoderm and endoderm induction by activin protein, while Xnr transcript induction was unaffected by cmXnr2, consistent with an interference with the function of Xnr peptides that were induced by activin protein treatment. The severe hyperdorsalization and gastrulation defects caused by Xnr2 in whole embryos were rescued by cmXnr2, establishing a specific antagonistic relationship between the normal and cleavage mutant proteins. Expression of cmXnr2 resulted in delayed dorsal lip formation and a range of anterior truncations that were associated with delayed and suppressed expression of markers for dorsoanterior endoderm, in which the recently recognized head organizer activity resides. Reciprocally, Xnr2 induced dorsoanterior endodermal markers, such as cerberus, Xhex-1 and Frzb, in animal cap ectoderm. The migratory behavior of head mesendoderm explanted from cmXnr2 RNA-injected embryos was drastically reduced. These results indicate that Xnrs play crucial roles in initiating gastrulation, probably by acting downstream of an activin-like signaling pathway that leads to dorsal mesendodermal specification, including setting up the head organizer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Harel, I., Y. Maezawa, R. Avraham, A. Rinon, H. Y. Ma, J. W. Cross, N. Leviatan et al. „Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis“. Proceedings of the National Academy of Sciences 109, Nr. 46 (29.10.2012): 18839–44. http://dx.doi.org/10.1073/pnas.1208690109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Seo, Hee-Chan, Øyvind Drivenes und Anders Fjose. „A zebrafish Six4 homologue with early expression in head mesoderm“. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1442, Nr. 2-3 (November 1998): 427–31. http://dx.doi.org/10.1016/s0167-4781(98)00193-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Shen, M. M., H. Wang und P. Leder. „A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation“. Development 124, Nr. 2 (15.01.1997): 429–42. http://dx.doi.org/10.1242/dev.124.2.429.

Der volle Inhalt der Quelle
Annotation:
We have developed a differential display screening approach to identify mesoderm-specific genes, relying upon the differentiation of embryonic stem (ES) cells in vitro. Using this strategy, we have isolated a novel murine gene that encodes a secreted molecule containing a variant epidermal growth factor-like (EGF) motif. We named this gene Cryptic, based on its predicted protein sequence similarity with Cripto, which encodes an EGF-related growth factor. Based on their strong sequence similarities, we propose that Cryptic, Cripto, and the Xenopus FRL-1 gene define a new family of growth factor-like molecules, which we name the ‘CFC’ (Cripto, Frl-1, and Cryptic) family. Analysis of Cryptic expression by in situ hybridization shows that it is expressed during gastrulation in two spatial domains that correspond to the axial and lateral mesoderm. In the first domain of expression, Cryptic expression is progressively localized to the anterior primitive streak, the head process, and the node and notochordal plate. In the second domain, Cryptic expression is initially concentrated in the lateral region of the egg cylinder, and is later found circumferentially in the intermediate and lateral plate mesoderm. Furthermore, Cryptic expression can also be detected at the early head-fold stage in the midline neuroectoderm, and consequently is an early marker for the prospective floor plate of the neural tube. Expression of Cryptic ceases at the end of gastrulation, and has not been observed in later embryonic stages or in adult tissues. Thus, Cryptic encodes a putative signaling molecule whose expression suggests potential roles in mesoderm and/or neural patterning during gastrulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kaestner, K. H., S. C. Bleckmann, A. P. Monaghan, J. Schlondorff, A. Mincheva, P. Lichter und G. Schutz. „Clustered arrangement of winged helix genes fkh-6 and MFH-1: possible implications for mesoderm development“. Development 122, Nr. 6 (01.06.1996): 1751–58. http://dx.doi.org/10.1242/dev.122.6.1751.

Der volle Inhalt der Quelle
Annotation:
The ‘winged helix’ or ‘forkhead’ transcription factor gene family is defined by a common 100 amino acid DNA binding domain which is a variant of the helix-turn-helix motif. Here we describe the structure and expression of the mouse fkh-6 and MFH-1 genes. Both genes are expressed in embryonic mesoderm from the headfold stage onward. Transcripts for both genes are localised mainly to mesenchymal tissues, fkh-6 mRNA is enriched in the mesenchyme of the gut, lung, tongue and head, whereas MFH-1 is expressed in somitic mesoderm, in the endocardium and blood vessels as well as the condensing mesenchyme of the bones and kidney and in head mesenchyme. Both genes are located within a 10 kb region (in mouse chromosome 8 at 5.26 +/− 2.56 cM telomeric to Actsk1. The close physical linkage of these two winged helix genes is conserved in man, where the two genes map to chromosome 16q22-24. This tandem arrangement suggests the common use of regulatory mechanisms. The fkh-6/MFH-1 locus maps close to the mouse mutation amputated, which is characterised by abnormal development of somitic and facial mesoderm. Based on the expression patterns we suggest that a mutation in MFH-1, not fkh-6 is the possible cause for the amputated phenotype.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Schilling, T. F., C. Walker und C. B. Kimmel. „The chinless mutation and neural crest cell interactions in zebrafish jaw development“. Development 122, Nr. 5 (01.05.1996): 1417–26. http://dx.doi.org/10.1242/dev.122.5.1417.

Der volle Inhalt der Quelle
Annotation:
During vertebrate development, neural crest cells are thought to pattern many aspects of head organization, including the segmented skeleton and musculature of the jaw and gills. Here we describe mutations at the gene chinless, chn, that disrupt the skeletal fates of neural crest cells in the head of the zebrafish and their interactions with muscle precursors. chn mutants lack neural-crest-derived cartilage and mesoderm-derived muscles in all seven pharyngeal arches. Fate mapping and gene expression studies demonstrate the presence of both undifferentiated cartilage and muscle precursors in mutants. However, chn blocks differentiation directly in neural crest, and not in mesoderm, as revealed by mosaic analyses. Neural crest cells taken from wild-type donor embryos can form cartilage when transplanted into chn mutant hosts and rescue some of the patterning defects of mutant pharyngeal arches. In these cases, cartilage only forms if neural crest is transplanted at least one hour before its migration, suggesting that interactions occur transiently in early jaw precursors. In contrast, transplanted cells in paraxial mesoderm behave according to the host genotype; mutant cells form jaw muscles in a wild-type environment. These results suggest that chn is required for the development of pharyngeal cartilages from cranial neural crest cells and subsequent crest signals that pattern mesodermally derived myocytes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hammerschmidt, M., und C. Nusslein-Volhard. „The expression of a zebrafish gene homologous to Drosophila snail suggests a conserved function in invertebrate and vertebrate gastrulation“. Development 119, Nr. 4 (01.12.1993): 1107–18. http://dx.doi.org/10.1242/dev.119.4.1107.

Der volle Inhalt der Quelle
Annotation:
Snail, a zinc finger protein, is required for the formation of the ventral furrow and the mesoderm during gastrulation of the Drosophila embryo. snail homologues have been cloned from Xenopus and mouse. We have isolated a zebrafish homologue of snail, designated sna-1. Like its Drosophila counterpart, Sna-1 protein is nuclear. Maternal and zygotic sna-1 transcripts are ubiquitously distributed in zebrafish embryos of cleavage and blastula stages. In gastrulating embryos, sna-1 is expressed in involuting cells of the germ ring, but not in those at the dorsal midline, the presumptive notochordal region. After involution, the expression is maintained in the paraxial mesoderm and becomes prominent in the muscle pioneer precursors, followed by expression at the posterior somite boundaries. Later, sna-1 is expressed in neural crest and mesodermal derivatives of the head region. Sna-1 expression is induced in animal cap cells by activin A. The early sna-1 expression pattern in gastrulating zebrafish no tail (ntl) mutant embryos is normal except a reduction in the level of sna-1 transcription, suggesting that Ntl protein is not the key activator of sna-1 transcription in vivo, but might be involved in the enhancement or maintenance of sna-1 transcription. Data obtained in studies with ectopic ntl expression support this model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lemaire, P., S. Darras, D. Caillol und L. Kodjabachian. „A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone“. Development 125, Nr. 13 (01.07.1998): 2371–80. http://dx.doi.org/10.1242/dev.125.13.2371.

Der volle Inhalt der Quelle
Annotation:
We have studied the role of the activin immediate-early response gene Mix.1 in mesoderm and endoderm formation. In early gastrulae, Mix.1 is expressed throughout the vegetal hemisphere, including marginal-zone cells expressing the trunk mesodermal marker Xbra. During gastrulation, the expression domains of Xbra and Mix.1 become progressively exclusive as a result of the establishment of a negative regulatory loop between these two genes. This mutual repression is important for the specification of the embryonic body plan as ectopic expression of Mix.1 in the Xbra domain suppresses mesoderm differentiation. The same effect was obtained by overexpressing VP16Mix.1, a fusion protein comprising the strong activator domain of viral VP16 and the homeodomain of Mix.1, suggesting that Mix.1 acts as a transcriptional activator. Mix.1 also has a role in endoderm formation. It cooperates with the dorsal vegetal homeobox gene Siamois to activate the endodermal markers edd, Xlhbox8 and cerberus in animal caps. Conversely, vegetal overexpression of enRMix.1, an antimorphic Mix.1 mutant, leads to a loss of endoderm differentiation. Finally, by targeting enRMix.1 expression to the anterior endoderm, we could test the role of this tissue during embryogenesis and show that it is required for head formation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhang, J., und M. L. King. „Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning“. Development 122, Nr. 12 (01.12.1996): 4119–29. http://dx.doi.org/10.1242/dev.122.12.4119.

Der volle Inhalt der Quelle
Annotation:
An RNA localized to the vegetal cortex of Xenopus oocytes encodes a novel T-box protein (VegT) capable of inducing either dorsal or posterior ventral mesoderm at different times in development. VegT is a nuclear protein and its C-terminal domain can activate transcription in a yeast reporter assay, observations consistent with VegT functioning as a transcription factor. Zygotic expression is dynamic along the dorsoventral axis, with transcripts first expressed in the dorsal marginal zone. By the end of gastrulation, VegT is expressed exclusively in posterior ventral and lateral mesoderm and is excluded from the notochord. Later expression is confined to a subset of Rohon-Beard cells, a type of primary sensory neuron. In animal cap assays, VegT is capable of converting prospective ectoderm into ventral lateral mesoderm. Such ectopic expression of VegT induces its own expression as well as that of Xwnt-8 in caps, suggesting that a Wnt pathway may be involved. Mis-expression of VegT in dorsal animal blastomeres fated to contribute to brain suppresses head formation. Our results suggest that VegT is a localized transcription factor, which operates sequentially in several developmental pathways during embryogenesis, including dorsoventral and posterior patterning of mesoderm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Yamada, T. „Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid“. Development 120, Nr. 11 (01.11.1994): 3051–62. http://dx.doi.org/10.1242/dev.120.11.3051.

Der volle Inhalt der Quelle
Annotation:
Caudalization, which is proposed to be one of two functions of the amphibian organizer, initiates posterior pathways of neural development in the dorsalized ectoderm. In the absence of caudalization, dorsalized ectoderm only expresses the most anterior (archencephalic) differentiation. In the presence of caudalization, dorsalized ectorderm develops various levels of posterior neural tissues, depending on the extent of caudalization. A series of induction experiments have shown that caudalization is mediated by convergent extension: cell motility that is based on directed cell intercalation, and is essential for the morphogenesis of posterior axial tissues. During amphibian development, convergent extension is first expressed all-over the mesoderm and, after mesoderm involution, it becomes localized to the posterior mid-dorsal mesoderm, which produces notochord. This expression pattern of specific down regulation of convergent extension is also followed by the expression of the brachyury homolog. Furthermore, mouse brachyury has been implicated in the regulation of tissue elongation on the one hand, and in the control of posterior differentiation on the other. These observations suggest that protein encoded by the brachyury homolog controls the expression of convergent extension in the mesoderm. The idea is fully corroborated by a genetic study of mouse brachyury, which demonstrates that the gene product produces elongation of the posterior embryonic axis. However, there exists evidence for the induction of posterior dorsal mesodermal tissues, if brachyury homolog protein is expressed in the ectoderm. In both cases the brachyury homolog contributes to caudalization. A number of other genes appear to be involved in caudalization. The most important of these is pintavallis, which contains a fork-head DNA binding domain. It is first expressed in the marginal zone. After mesoderm involution, it is present not only in the presumptive notochord, but also in the floor plate. This is in contrast to the brachyury homolog, whose expression is restricted to mesoderm. The morphogenetic effects of exogenous RA on anteroposterior specification during amphibian embryogenesis are reviewed. The agent inhibits archencephalic differentiation and enhances differentiation of deuterencephalic and trunk levels. Thus the effect of exogenous RA on morphogenesis of CNS is very similar to that of caudalization, which is proposed to occur through the normal action of the organizer. According to a detailed analysis of the effect of lithium on morphogenesis induced by the Cynops organizer, lithium has a caudalizing effect closely comparable with that of RA. Furthermore, lithium induces convergent extension in the prechordal plate, which normally does not show cell motility.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Trevers, Katherine E., Ravindra S. Prajapati, Mark Hintze, Matthew J. Stower, Anna C. Strobl, Monica Tambalo, Ramya Ranganathan et al. „Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells“. Proceedings of the National Academy of Sciences 115, Nr. 2 (19.12.2017): 355–60. http://dx.doi.org/10.1073/pnas.1719674115.

Der volle Inhalt der Quelle
Annotation:
Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen’s node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as “preborder”; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Iida, K., H. Koseki, H. Kakinuma, N. Kato, Y. Mizutani-Koseki, H. Ohuchi, H. Yoshioka et al. „Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis“. Development 124, Nr. 22 (15.11.1997): 4627–38. http://dx.doi.org/10.1242/dev.124.22.4627.

Der volle Inhalt der Quelle
Annotation:
Mesenchyme Fork Head-1 (MFH-1) is a forkhead (also called winged helix) transcription factor defined by a common 100-amino acid DNA-binding domain. MFH-1 is expressed in non-notochordal mesoderm in the prospective trunk region and in cephalic neural-crest and cephalic mesoderm-derived mesenchymal cells in the prechordal region of early embryos. Subsequently, strong expression is localized in developing cartilaginous tissues, kidney and dorsal aortas. To investigate the developmental roles of MFH-1 during embryogenesis, mice lacking the MFH-1 locus were generated by targeted mutagenesis. MFH-1-deficient mice died embryonically and perinatally, and exhibited interrupted aortic arch and skeletal defects in the neurocranium and the vertebral column. Interruption of the aortic arch seen in the mutant mice was the same as in human congenital anomalies. These results suggest that MFH-1 has indispensable roles during the extensive remodeling of the aortic arch in neural-crest-derived cells and in skeletogenesis in cells derived from the neural crest and the mesoderm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Venters, Sara J., und Charles P. Ordahl. „Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence“. Development 129, Nr. 16 (15.08.2002): 3873–85. http://dx.doi.org/10.1242/dev.129.16.3873.

Der volle Inhalt der Quelle
Annotation:
The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Pérez Sánchez, Cristina, Sergio Casas-Tintó, Lucas Sánchez, Javier Rey-Campos und Begoña Granadino. „DmFoxF, a novel Drosophila fork head factor expressed in visceral mesoderm“. Mechanisms of Development 111, Nr. 1-2 (Februar 2002): 163–66. http://dx.doi.org/10.1016/s0925-4773(01)00603-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

McKinney, Mary Cathleen, Rebecca McLennan, Rasa Giniunaite, Ruth E. Baker, Philip K. Maini, Hans G. Othmer und Paul M. Kulesa. „Visualizing mesoderm and neural crest cell dynamics during chick head morphogenesis“. Developmental Biology 461, Nr. 2 (Mai 2020): 184–96. http://dx.doi.org/10.1016/j.ydbio.2020.02.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

de Velasco, Begona, Lolitika Mandal, Marianna Mkrtchyan und Volker Hartenstein. „Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster“. Development Genes and Evolution 216, Nr. 1 (25.10.2005): 39–51. http://dx.doi.org/10.1007/s00427-005-0029-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ruiz i Altaba, A., und T. M. Jessell. „Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis“. Development 116, Nr. 1 (01.09.1992): 81–93. http://dx.doi.org/10.1242/dev.116.1.81.

Der volle Inhalt der Quelle
Annotation:
We have identified a novel frog gene, Pintallavis (the Catalan for lipstick), that is related to the fly fork head and rat HNF-3 genes. Pintallavis is expressed in the organizer region of gastrula embryos as a direct zygotic response to dorsal mesodermal induction. Subsequently, Pintallavis is expressed in axial midline cells of all three germ layers. In axial mesoderm expression is graded with highest levels posteriorly. Midline neural plate cells that give rise to the floor plate transiently express Pintallavis, apparently in response to induction by the notochord. Overexpression of Pintallavis perturbs the development of the neural axis, suppressing the differentiation of anterior and dorsal neural cell types but causing an expansion of the posterior neural tube. Our results suggest that Pintallavis functions in the induction and patterning of the neural axis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie