Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Harmonic analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Harmonic analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Harmonic analysis"
Wu, Shan-He, Imran Abbas Baloch und İmdat İşcan. „On Harmonically(p,h,m)-Preinvex Functions“. Journal of Function Spaces 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2148529.
Der volle Inhalt der QuelleZhao, Keyu. „Grid-Connected PV System Harmonic Analysis“. MATEC Web of Conferences 404 (2024): 02005. http://dx.doi.org/10.1051/matecconf/202440402005.
Der volle Inhalt der QuelleZhang, Feng, Jue Long Li, Chong Feng Tian, Zong Jie Liu, Hai Feng Ye und Xiu Chen Jiang. „Binary Scale Time Windows FFT for Harmonic Analysis“. Applied Mechanics and Materials 448-453 (Oktober 2013): 2003–10. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2003.
Der volle Inhalt der QuelleVijayalakshmi, V. J., C. S. Ravichandran und A. Amudha. „Predetermination of Higher Order Harmonics by Dual Phase Analysis“. Applied Mechanics and Materials 573 (Juni 2014): 13–18. http://dx.doi.org/10.4028/www.scientific.net/amm.573.13.
Der volle Inhalt der QuelleBonilla, Axel Rivas, und Ha Thu Le. „Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System“. WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS 23 (09.02.2024): 1–13. http://dx.doi.org/10.37394/23201.2024.23.1.
Der volle Inhalt der QuelleKaromah, Akhlaqul. „Induction Motor Harmonics Voltage Waveform Analysis based on Machine Constriction“. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) 14, Nr. 2 (28.08.2020): 63–67. http://dx.doi.org/10.21776/jeeccis.v14i2.639.
Der volle Inhalt der QuelleBellan, Diego. „Three-Phase Distortion Analysis based on Space-Vector Locus Diagrams“. WSEAS TRANSACTIONS ON POWER SYSTEMS 18 (31.12.2023): 467–73. http://dx.doi.org/10.37394/232016.2023.18.46.
Der volle Inhalt der QuelleJiang, Peiyu, Zhanlong Zhang, Zijian Dong und Yu Yang. „Vibration Measurement and Numerical Modeling Analysis of Transformer Windings and Iron Cores Based on Voltage and Current Harmonics“. Machines 10, Nr. 9 (08.09.2022): 786. http://dx.doi.org/10.3390/machines10090786.
Der volle Inhalt der QuelleWang, Xiangrong, und Guangtian Shi. „Analysis of harmonic influence of improved PFC circuit on SS4G electric locomotive“. Journal of Physics: Conference Series 2260, Nr. 1 (01.04.2022): 012032. http://dx.doi.org/10.1088/1742-6596/2260/1/012032.
Der volle Inhalt der QuelleJi, Yanpeng, Bin Li und Jingcheng Sun. „Harmonic Analysis on Torque Ripple of Brushless DC Motor Based on Advanced Commutation Control“. Journal of Control Science and Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/3530127.
Der volle Inhalt der QuelleDissertationen zum Thema "Harmonic analysis"
Wright, P. S. „The accurate analysis of smoothly fluctuating harmonics applied to the calibration of harmonic analysers“. Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843265/.
Der volle Inhalt der QuelleScurry, James. „One and two weight theory in harmonic analysis“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47565.
Der volle Inhalt der QuelleLak, Rashad Rashid Haji. „Harmonic analysis using methods of nonstandard analysis“. Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5754/.
Der volle Inhalt der QuelleVan, der Merwe Marius. „Harmonic mixer analysis and design“. Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52872.
Der volle Inhalt der QuelleSome digitised pages may appear illegible due to the condition of the original hard copy.
ENGLISH ABSTRACT: Harmonic mixers are capable of extended frequency operation by mixing with a harmonic of the LO (local oscillator) signal, eliminating the need for a high frequency, high power LO. Their output spectra also have certain characteristics that make them ideal for a variety of applications. The operation of the harmonic mixer is investigated, and the mixer is analyzed using an extension of the classic mixer theory. The synthesis of harmonic mixers is also investigated, and a design procedure is proposed for the design and realization of a variety of harmonic mixers. This design procedure is evaluated with the design and realization of two harmonic mixers, one in X-band and the other in S-band. Measurements suggest that the procedure is successful for the specific applications.
AFRIKAANSE OPSOMMING: Harmoniese mengers kan by hoer frekwensies gebruik word as gewone mengers deurdat hulle gebruik maak van ‘n harmoniek van die LO. ‘n Hoe-frekwensie, hoe-drywing LO word dus nie benodig nie. Die mengers se uittreespektra het ook ‘n aantal karakteristieke wat hulle goeie kandidate maak vir ‘n verskeidenheid van toepassings. Die werking van die harmoniese menger word ondersoek deur uit te brei op die klassieke menger-teorie. Die ontwerp van die harmoniese menger word vervolgens ondersoek, waama ‘n ontwerpsprosedure voorgestel word vir die ontwerp van ‘n verskeidenheid van harmoniese mengers. Hierdie prosedure word getoets met die ontwerp en realisering van twee harmoniese mengers, een in X-band en die ander in S-band. Vanuit die metings is dit duidelik dat die ontwerpsprosedure geslaagd is vir die spesifieke geval.
Li, Jialun. „Harmonic analysis of stationary measures“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0311/document.
Der volle Inhalt der QuelleLet μ be a Borel probability measure on SL m+1 (R), whose support generates a Zariski dense subgroup. Let V be a finite dimensional irreducible linear representation of SL m+1 (R). A theorem of Furstenberg says that there exists a unique μ-stationary probability measure on PV and we are interested in the Fourier decay of the stationary measure. The main result of the thesis is that the Fourier transform of the stationary measure has a power decay. From this result, we obtain a spectral gap of the transfer operator, whose properties allow us to establish an exponential error term for the renewal theorem in the context of products of random matrices. A key technical ingredient for the proof is a Fourier decay of multiplicative convolutions of measures on R n , which is a generalisation of Bourgain’s theorem on dimension 1. We establish this result by using a sum-product estimate due to He-de Saxcé. In the last part, we generalize a result of Lax-Phillips and a result of Hamenstädt on the finiteness of small eigenvalues of the Laplace operator on geometrically finite hyperbolic manifolds
Thunberg, Erik. „On the Benefit of Harmonic Measurements in Power Systems“. Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3219.
Der volle Inhalt der QuelleSmith, Zachary J. „The Bochner Identity in Harmonic Analysis“. Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SmithZJ2007.pdf.
Der volle Inhalt der QuelleChung, Kin Hoong School of Mathematics UNSW. „Compact Group Actions and Harmonic Analysis“. Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17639.
Der volle Inhalt der QuelleDigby, G. „Harmonic analysis of A.C. traction schemes“. Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233938.
Der volle Inhalt der QuelleXu, Zengfu. „Harmonic analysis on Chébli-Trimèche hypergroups“. Thesis, Xu, Zengfu (1994) Harmonic analysis on Chébli-Trimèche hypergroups. PhD thesis, Murdoch University, 1994. https://researchrepository.murdoch.edu.au/id/eprint/51538/.
Der volle Inhalt der QuelleBücher zum Thema "Harmonic analysis"
Helson, Henry. Harmonic Analysis. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0.
Der volle Inhalt der QuelleEymard, Pierre, und Jean-Paul Pier, Hrsg. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086584.
Der volle Inhalt der QuelleCheng, Min-Teh, Dong-Gao Deng und Xing-Wei Zhou, Hrsg. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0087751.
Der volle Inhalt der QuelleAsh, J. Marshall, und Roger L. Jones, Hrsg. Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/conm/411.
Der volle Inhalt der QuelleHelson, Henry. Harmonic Analysis. Gurgaon: Hindustan Book Agency, 2010. http://dx.doi.org/10.1007/978-93-86279-47-7.
Der volle Inhalt der QuelleSimon, Barry. Harmonic analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenHelson, Henry. Harmonic analysis. Pacific Grove, Calif: Wadsworth & Brooks/Cole Advanced Books & Software, 1991.
Den vollen Inhalt der Quelle findenPetrovich, Khavin Viktor, und Nikolʹskiĭ N. K, Hrsg. Commutative harmonic analysis IV: Harmonic analysis in IRn̳. Berlin: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenColella, David, Hrsg. Commutative Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/conm/091.
Der volle Inhalt der QuelleDelorme, Patrick, und Michèle Vergne, Hrsg. Noncommutative Harmonic Analysis. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8204-0.
Der volle Inhalt der QuelleBuchteile zum Thema "Harmonic analysis"
Helson, Henry. „Fourier Series and Integrals“. In Harmonic Analysis, 1–49. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_1.
Der volle Inhalt der QuelleHelson, Henry. „The Fourier Integral“. In Harmonic Analysis, 51–73. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_2.
Der volle Inhalt der QuelleHelson, Henry. „Hardy Spaces“. In Harmonic Analysis, 75–105. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_3.
Der volle Inhalt der QuelleHelson, Henry. „Conjugate Functions“. In Harmonic Analysis, 107–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_4.
Der volle Inhalt der QuelleHelson, Henry. „Translation“. In Harmonic Analysis, 143–63. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_5.
Der volle Inhalt der QuelleHelson, Henry. „Distribution“. In Harmonic Analysis, 165–76. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_6.
Der volle Inhalt der QuellePier, Jean-Paul. „Some views on the evolution of harmonic analysis“. In Harmonic Analysis, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086585.
Der volle Inhalt der QuelleMackey, George W. „Induced representations and the applications of harmonic analysis“. In Harmonic Analysis, 16–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086586.
Der volle Inhalt der QuelleAkkouchi, Mohamed. „Une caracterisation du noyau de Poisson d'un arbre eomogene“. In Harmonic Analysis, 52–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086587.
Der volle Inhalt der QuelleAnker, Jean-Philippe. „Le noyau de la chaleur sur les espaces symetriques U(p,q)/U(p)×U(q)“. In Harmonic Analysis, 60–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086588.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Harmonic analysis"
Clue, Vladimir. „Harmonic analysis“. In 2004 IEEE Electro/Information Technology Conference - (EIT). IEEE, 2004. http://dx.doi.org/10.1109/eit.2004.4569366.
Der volle Inhalt der QuelleZhu, Xuanwei, Buping Jin und Huibin Qin. „Harmonic generator“. In 2012 International Conference on Image Analysis and Signal Processing (IASP). IEEE, 2012. http://dx.doi.org/10.1109/iasp.2012.6425078.
Der volle Inhalt der QuelleYu, Jingwen, Boying Wen und Hui Xue. „Transitory Harmonic Analysis Using Harmonic Distribution Map“. In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918945.
Der volle Inhalt der QuelleWan, Yifan. „Harmonic analysis in tide analysis“. In Second International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), herausgegeben von Shi Jin und Wanyang Dai. SPIE, 2023. http://dx.doi.org/10.1117/12.2672678.
Der volle Inhalt der QuelleShimada, Yoshihito. „White noise distribution theory and its application“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-21.
Der volle Inhalt der QuelleSzafraniec, Franciszek Hugon. „Operators of the q-oscillator“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-22.
Der volle Inhalt der QuelleBanica, Teodor, Julien Bichon und Benoît Collins. „Quantum permutation groups: a survey“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-1.
Der volle Inhalt der QuelleFendle, Gero, Karlheinz Gröchenig und Michael Leinert. „On spectrality of the algebra of convolution dominated operators“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-10.
Der volle Inhalt der QuelleHiai, Fumio, und Dénes Petz. „A new approach to mutual information“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-11.
Der volle Inhalt der QuelleHinz, Melanie, und Wojciech Młotkowski. „Free cumulants of some probability measures“. In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-12.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Harmonic analysis"
Niederer, J. BNL MAD: Harmonic Analysis Commands. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/1151361.
Der volle Inhalt der QuelleFerreira, Milton. Harmonic Analysis on the Einstein Gyrogroup. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-21-60.
Der volle Inhalt der QuelleTolbert, L. M. Completion report harmonic analysis of electrical distribution systems. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/285500.
Der volle Inhalt der QuelleCasey, Stephen D. Number Theoretic Methods in Harmonic Analysis: Theory and Application. Fort Belvoir, VA: Defense Technical Information Center, Mai 2002. http://dx.doi.org/10.21236/ada413800.
Der volle Inhalt der QuelleBernatska, Julia, und Petro Holod. • Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. GIQ, 2012. http://dx.doi.org/10.7546/giq-14-2013-61-73.
Der volle Inhalt der QuelleBernatska and Petro Holod, Julia Bernatska and Petro Holod. Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. Journal of Geometry and Symmetry in Physics, 2013. http://dx.doi.org/10.7546/jgsp-29-2013-39-51.
Der volle Inhalt der QuelleCasey, Stephen D. Signal Reconstruction and Analysis Via New Techniques in Harmonic and Complex Analysis. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada440756.
Der volle Inhalt der QuelleMickens, Ronald, und Kale Oyedeji. Dominant Balance Analysis of the Fractional Power Damped Harmonic Oscillator. Atlanta University Center Robert W. Woodruff Library, 2019. http://dx.doi.org/10.22595/cau.ir:2020_mickens_oyedeji_harmonic_oscillator.
Der volle Inhalt der QuelleStoughton, R. S., und J. E. Deibler. Harmonic analysis of a representative Generation One Tank Waste Retrieval Manipulator. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10148566.
Der volle Inhalt der QuelleNiederer, J. BNL MAD: Harmonic Analysis Based Orbit Correction Commands AGS Booster Applications. Office of Scientific and Technical Information (OSTI), Februar 1997. http://dx.doi.org/10.2172/1151363.
Der volle Inhalt der Quelle