Zeitschriftenartikel zum Thema „Handwritten characters“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Handwritten characters" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Jehangir, Sardar, Sohail Khan, Sulaiman Khan, Shah Nazir und Anwar Hussain. „Zernike Moments Based Handwritten Pashto Character Recognition Using Linear Discriminant Analysis“. January 2021 40, Nr. 1 (01.01.2021): 152–59. http://dx.doi.org/10.22581/muet1982.2101.14.
Der volle Inhalt der QuelleZhu, Cheng Hui, Wen Jun Xu, Jian Ping Wang und Xiao Bing Xu. „Research on a Characteristic Extraction Algorithm Based on Analog Space-Time Process for Off-Line Handwritten Chinese Characters“. Advanced Materials Research 433-440 (Januar 2012): 3649–55. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.3649.
Der volle Inhalt der QuelleKhan, Sulaiman, Habib Ullah Khan und Shah Nazir. „Offline Pashto Characters Dataset for OCR Systems“. Security and Communication Networks 2021 (27.07.2021): 1–7. http://dx.doi.org/10.1155/2021/3543816.
Der volle Inhalt der QuelleMALIK, LATESH, und P. S. DESHPANDE. „RECOGNITION OF HANDWRITTEN DEVANAGARI SCRIPT“. International Journal of Pattern Recognition and Artificial Intelligence 24, Nr. 05 (August 2010): 809–22. http://dx.doi.org/10.1142/s0218001410008123.
Der volle Inhalt der QuelleAmulya, K., Lakshmi Reddy, M. Chandara Kumar und Rachana D. „A Survey on Digitization of Handwritten Notes in Kannada“. International Journal of Innovative Technology and Exploring Engineering 12, Nr. 1 (30.12.2022): 6–11. http://dx.doi.org/10.35940/ijitee.a9350.1212122.
Der volle Inhalt der QuelleKhan, Majid A., Nazeeruddin Mohammad, Ghassen Ben Brahim, Abul Bashar und Ghazanfar Latif. „Writer verification of partially damaged handwritten Arabic documents based on individual character shapes“. PeerJ Computer Science 8 (20.04.2022): e955. http://dx.doi.org/10.7717/peerj-cs.955.
Der volle Inhalt der QuelleWijaya, Aditya Surya, Nurul Chamidah und Mayanda Mega Santoni. „Pengenalan Karakter Tulisan Tangan Dengan K-Support Vector Nearest Neighbor“. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 9, Nr. 1 (30.04.2019): 33. http://dx.doi.org/10.22146/ijeis.38729.
Der volle Inhalt der QuelleRevathi, Buddaraju, M. V. D. Prasad und Naveen Kishore Gattim. „Computationally efficient handwritten Telugu text recognition“. Indonesian Journal of Electrical Engineering and Computer Science 34, Nr. 3 (01.06.2024): 1618. http://dx.doi.org/10.11591/ijeecs.v34.i3.pp1618-1626.
Der volle Inhalt der QuelleZhang, Yan, und Liumei Zhang. „SGooTY: A Scheme Combining the GoogLeNet-Tiny and YOLOv5-CBAM Models for Nüshu Recognition“. Electronics 12, Nr. 13 (26.06.2023): 2819. http://dx.doi.org/10.3390/electronics12132819.
Der volle Inhalt der QuelleBhat, Mohammad Idrees, und B. Sharada. „Spectral Graph-based Features for Recognition of Handwritten Characters: A Case Study on Handwritten Devanagari Numerals“. Journal of Intelligent Systems 29, Nr. 1 (21.07.2018): 799–813. http://dx.doi.org/10.1515/jisys-2017-0448.
Der volle Inhalt der QuelleZhao, Yuliang, Xinyue Zhang, Boya Fu, Zhikun Zhan, Hui Sun, Lianjiang Li und Guanglie Zhang. „Evaluation and Recognition of Handwritten Chinese Characters Based on Similarities“. Applied Sciences 12, Nr. 17 (25.08.2022): 8521. http://dx.doi.org/10.3390/app12178521.
Der volle Inhalt der QuelleWadaskar, Ghanshyam, Vipin Bopanwar, Prayojita Urade, Shravani Upganlawar und Prof Rakhi Shende. „Handwritten Character Recognition“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 12 (31.12.2023): 508–11. http://dx.doi.org/10.22214/ijraset.2023.57366.
Der volle Inhalt der QuelleSomashekar, Thatikonda. „A Survey on Handwritten Character Recognition using Machine Learning Technique“. Journal of University of Shanghai for Science and Technology 23, Nr. 06 (18.06.2021): 1019–24. http://dx.doi.org/10.51201/jusst/21/05304.
Der volle Inhalt der QuelleKanmani, Dr S., B. Sujitha, K. Subalakshmi, S. Umamaheswari und Karimreddy Punya Sai Teja Reddy. „Off-Line and Online Handwritten Character Recognition Using RNN-GRU Algorithm“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 4 (30.04.2023): 2518–26. http://dx.doi.org/10.22214/ijraset.2023.50184.
Der volle Inhalt der QuelleTeja, K. Sai. „Hindi-Handwritten-Character- Recognition using Deep Learning“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 7 (31.07.2023): 369–73. http://dx.doi.org/10.22214/ijraset.2023.54606.
Der volle Inhalt der QuelleMahto, Manoj Kumar, Karamjit Bhatia und Rajendra Kumar Sharma. „Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition“. ELCVIA Electronic Letters on Computer Vision and Image Analysis 20, Nr. 2 (18.01.2022): 69–82. http://dx.doi.org/10.5565/rev/elcvia.1282.
Der volle Inhalt der QuelleAlwaqfi, Yazan, Mumtazimah Mohamad und Ahmad Al-Taani. „Generative Adversarial Network for an Improved Arabic Handwritten Characters Recognition“. International Journal of Advances in Soft Computing and its Applications 14, Nr. 1 (28.03.2022): 177–95. http://dx.doi.org/10.15849/ijasca.220328.12.
Der volle Inhalt der QuelleYadav, Bharati, Ajay Indian und Gaurav Meena. „HDevChaRNet: A deep learning-based model for recognizing offline handwritten devanagari characters“. Journal of Autonomous Intelligence 6, Nr. 2 (15.08.2023): 679. http://dx.doi.org/10.32629/jai.v6i2.679.
Der volle Inhalt der QuelleLin, Cheng-Jian, Yu-Cheng Liu und Chin-Ling Lee. „Automatic Receipt Recognition System Based on Artificial Intelligence Technology“. Applied Sciences 12, Nr. 2 (14.01.2022): 853. http://dx.doi.org/10.3390/app12020853.
Der volle Inhalt der QuelleHuang, Juanjuan, Ihtisham Ul Haq, Chaolan Dai, Sulaiman Khan, Shah Nazir und Muhammad Imtiaz. „Isolated Handwritten Pashto Character Recognition Using a K-NN Classification Tool based on Zoning and HOG Feature Extraction Techniques“. Complexity 2021 (24.03.2021): 1–8. http://dx.doi.org/10.1155/2021/5558373.
Der volle Inhalt der QuelleSuthar, Sanket B., und Amit R. Thakkar. „CNN-Based Optical Character Recognition for Isolated Printed Gujarati Characters and Handwritten Numerals“. International Journal of Mathematical, Engineering and Management Sciences 7, Nr. 5 (01.10.2022): 643–55. http://dx.doi.org/10.33889/ijmems.2022.7.5.042.
Der volle Inhalt der QuelleNaidu, D. J. Samatha, und T. Mahammad Rafi. „HANDWRITTEN CHARACTER RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS“. International Journal of Computer Science and Mobile Computing 10, Nr. 8 (30.08.2021): 41–45. http://dx.doi.org/10.47760/ijcsmc.2021.v10i08.007.
Der volle Inhalt der QuelleDevi, N. „Offline Handwritten Character Recognition using Convolutional Neural Network“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 8 (31.08.2021): 1483–89. http://dx.doi.org/10.22214/ijraset.2021.37610.
Der volle Inhalt der QuelleSharma, Kartik, S. V. Jagadeesh Kona, Anshul Jangwal, Aarthy M, Prayline Rajabai C und Deepika Rani Sona. „Handwritten Digits and Optical Characters Recognition“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 4 (04.05.2023): 20–24. http://dx.doi.org/10.17762/ijritcc.v11i4.6376.
Der volle Inhalt der QuelleLee, Hahn-Ming, Chin-Chou Lin und Jyh-Ming Chen. „A Preclassification Method for Handwritten Chinese Character Recognition Via Fuzzy Rules and Seart Neural Net“. International Journal of Pattern Recognition and Artificial Intelligence 12, Nr. 06 (September 1998): 743–61. http://dx.doi.org/10.1142/s0218001498000427.
Der volle Inhalt der QuelleAhsan, Shahrukh, Shah Tarik Nawaz, Talha Bin Sarwar, M. Saef Ullah Miah und Abhijit Bhowmik. „A machine learning approach for Bengali handwritten vowel character recognition“. IAES International Journal of Artificial Intelligence (IJ-AI) 11, Nr. 3 (01.09.2022): 1143. http://dx.doi.org/10.11591/ijai.v11.i3.pp1143-1152.
Der volle Inhalt der QuelleAsraful, Md, Md Anwar Hossain und Ebrahim Hossen. „Handwritten Bengali Alphabets, Compound Characters and Numerals Recognition Using CNN-based Approach“. Annals of Emerging Technologies in Computing 7, Nr. 3 (01.07.2023): 60–77. http://dx.doi.org/10.33166/aetic.2023.03.003.
Der volle Inhalt der QuelleNing, Zihao. „Research on Handwritten Chinese Character Recognition Based on BP Neural Network“. Modern Electronic Technology 6, Nr. 1 (23.06.2022): 12. http://dx.doi.org/10.26549/met.v6i1.11359.
Der volle Inhalt der QuelleKhatri, Suman, und Irphan Ali. „Hindi Numeral Recognition using Neural Network“. International Journal of Advance Research and Innovation 1, Nr. 3 (2013): 29–39. http://dx.doi.org/10.51976/ijari.131304.
Der volle Inhalt der QuelleJbrail, Mohammed Widad, und Mehmet Emin Tenekeci. „Character Recognition of Arabic Handwritten Characters Using Deep Learning“. Journal of Studies in Science and Engineering 2, Nr. 1 (19.03.2022): 32–40. http://dx.doi.org/10.53898/josse2022213.
Der volle Inhalt der QuelleAmin, Muhammad Sadiq, Siddiqui Muhammad Yasir und Hyunsik Ahn. „Recognition of Pashto Handwritten Characters Based on Deep Learning“. Sensors 20, Nr. 20 (17.10.2020): 5884. http://dx.doi.org/10.3390/s20205884.
Der volle Inhalt der QuelleSiddiqui, Sayma Shafeeque A. W., Rajashri G. Kanke, Ramnath M. Gaikwad und Manasi R. Baheti. „Review on Isolated Urdu Character Recognition: Offline Handwritten Approach“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 8 (31.08.2023): 384–88. http://dx.doi.org/10.22214/ijraset.2023.55164.
Der volle Inhalt der QuelleN S, Aswin. „Malayalam Handwritten Words Recognition: A Review“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (06.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem30057.
Der volle Inhalt der QuellePremachandra, H. Waruna H., Maika Yamada, Chinthaka Premachandra und Hiroharu Kawanaka. „Low-Computational-Cost Algorithm for Inclination Correction of Independent Handwritten Digits on Microcontrollers“. Electronics 11, Nr. 7 (29.03.2022): 1073. http://dx.doi.org/10.3390/electronics11071073.
Der volle Inhalt der QuelleDevaraj, Anjali Yogesh, Anup S. Jain, Omisha N und Shobana TS. „Kannada Text Recognition“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 9 (30.09.2022): 73–78. http://dx.doi.org/10.22214/ijraset.2022.46520.
Der volle Inhalt der QuelleLi, Ling Hua, Shou Fang Mi und Heng Bo Zhang. „Template-Based Handwritten Numeric Character Recognition“. Advanced Materials Research 586 (November 2012): 384–88. http://dx.doi.org/10.4028/www.scientific.net/amr.586.384.
Der volle Inhalt der QuelleLi, Kangying, Biligsaikhan Batjargal und Akira Maeda. „A Prototypical Network-Based Approach for Low-Resource Font Typeface Feature Extraction and Utilization“. Data 6, Nr. 12 (16.12.2021): 134. http://dx.doi.org/10.3390/data6120134.
Der volle Inhalt der QuelleHe, Rong. „Skeletonization of broken handwritten characters“. Optical Engineering 39, Nr. 11 (01.11.2000): 2882. http://dx.doi.org/10.1117/1.1315024.
Der volle Inhalt der QuelleSrinivasa Chakravarthy, V., und Bhaskar Kompella. „The shape of handwritten characters“. Pattern Recognition Letters 24, Nr. 12 (August 2003): 1901–13. http://dx.doi.org/10.1016/s0167-8655(03)00017-5.
Der volle Inhalt der QuelleSrivastav, Ankita, und Neha Sahu. „Segmentation of Devanagari Handwritten Characters“. International Journal of Computer Applications 142, Nr. 14 (18.05.2016): 15–18. http://dx.doi.org/10.5120/ijca2016909994.
Der volle Inhalt der QuelleVaidehi K. und Manivannan R. „Automated Math Symbol Classification Using SVM“. International Journal of e-Collaboration 18, Nr. 2 (01.03.2022): 1–14. http://dx.doi.org/10.4018/ijec.304037.
Der volle Inhalt der QuelleAli, Aree, und Bayan Omer. „Invarianceness for Character Recognition Using Geo-Discretization Features“. Computer and Information Science 9, Nr. 2 (17.03.2016): 1. http://dx.doi.org/10.5539/cis.v9n2p1.
Der volle Inhalt der QuelleR, Mr Venkatesh. „Handwritten Telugu Character Recognition & Signature Verification“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (28.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem31955.
Der volle Inhalt der QuelleHA, JIN-YOUNG, SE-CHANG OH und JIN H. KIM. „RECOGNITION OF UNCONSTRAINED HANDWRITTEN ENGLISH WORDS WITH CHARACTER AND LIGATURE MODELING“. International Journal of Pattern Recognition and Artificial Intelligence 09, Nr. 03 (Juni 1995): 535–56. http://dx.doi.org/10.1142/s0218001495000511.
Der volle Inhalt der QuelleFirdous, Arusa, Neha Pawar, Muheet Ahmed Butt und Majid Zaman. „Review of Optical Character Recognition Techniques& Applications“. International Journal of Advanced Research in Computer Science and Software Engineering 7, Nr. 7 (30.07.2017): 206. http://dx.doi.org/10.23956/ijarcsse/v7i7/0158.
Der volle Inhalt der QuelleRehman, Muhammad Zubair, Nazri Mohd. Nawi, Mohammad Arshad und Abdullah Khan. „Recognition of Cursive Pashto Optical Digits and Characters with Trio Deep Learning Neural Network Models“. Electronics 10, Nr. 20 (15.10.2021): 2508. http://dx.doi.org/10.3390/electronics10202508.
Der volle Inhalt der QuelleKumar, J., und A. Roy. „DograNet – a comprehensive offline dogra handwriting character dataset“. Journal of Physics: Conference Series 2251, Nr. 1 (01.04.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2251/1/012008.
Der volle Inhalt der QuelleDas, Mamatarani, Mrutyunjaya Panda und Shreela Dash. „Enhancing the Power of CNN Using Data Augmentation Techniques for Odia Handwritten Character Recognition“. Advances in Multimedia 2022 (22.12.2022): 1–13. http://dx.doi.org/10.1155/2022/6180701.
Der volle Inhalt der QuelleUddin, Imran, Dzati A. Ramli, Abdullah Khan, Javed Iqbal Bangash, Nosheen Fayyaz, Asfandyar Khan und Mahwish Kundi. „Benchmark Pashto Handwritten Character Dataset and Pashto Object Character Recognition (OCR) Using Deep Neural Network with Rule Activation Function“. Complexity 2021 (04.03.2021): 1–16. http://dx.doi.org/10.1155/2021/6669672.
Der volle Inhalt der QuelleNISHIDA, HIROBUMI, und SHUNJI MORI. „A MODEL-BASED SPLIT-AND-MERGE METHOD FOR CHARACTER STRING RECOGNITION“. International Journal of Pattern Recognition and Artificial Intelligence 08, Nr. 05 (Oktober 1994): 1205–22. http://dx.doi.org/10.1142/s0218001494000607.
Der volle Inhalt der Quelle