Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Guided elastic waves.

Zeitschriftenartikel zum Thema „Guided elastic waves“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Guided elastic waves" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Fairuschin, Viktor, Felix Brand, Alexander Backer und Klaus Stefan Drese. „Elastic Properties Measurement Using Guided Acoustic Waves“. Sensors 21, Nr. 19 (08.10.2021): 6675. http://dx.doi.org/10.3390/s21196675.

Der volle Inhalt der Quelle
Annotation:
Nondestructive evaluation of elastic properties plays a critical role in condition monitoring of thin structures such as sheets, plates or tubes. Recent research has shown that elastic properties of such structures can be determined with remarkable accuracy by utilizing the dispersive nature of guided acoustic waves propagating in them. However, existing techniques largely require complicated and expensive equipment or involve accurate measurement of an additional quantity, rendering them impractical for industrial use. In this work, we present a new approach that requires only a pair of piezoelectric transducers used to measure the group velocities ratio of fundamental guided wave modes. A numerical model based on the spectral collocation method is used to fit the measured data by solving a bound-constrained nonlinear least squares optimization problem. We verify our approach on both simulated and experimental data and achieve accuracies similar to those reported by other authors. The high accuracy and simple measurement setup of our approach makes it eminently suitable for use in industrial environments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Camou, S., Th Pastureaud, H. P. D. Schenk, S. Ballandras und V. Laude. „Guided elastic waves in GaN-on-sapphire“. Electronics Letters 37, Nr. 16 (2001): 1053. http://dx.doi.org/10.1049/el:20010668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dieulesaint, Eugène, und Daniel Royer. „Liquid level detector by guided elastic waves“. Journal of the Acoustical Society of America 85, Nr. 3 (März 1989): 1390. http://dx.doi.org/10.1121/1.397395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sotiropoulos, D. A., und G. Tougelidis. „Guided elastic waves in orthotropic surface layers“. Ultrasonics 36, Nr. 1-5 (Februar 1998): 371–74. http://dx.doi.org/10.1016/s0041-624x(97)00092-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Skelton, Elizabeth A., Samuel D. M. Adams und Richard V. Craster. „Guided elastic waves and perfectly matched layers“. Wave Motion 44, Nr. 7-8 (August 2007): 573–92. http://dx.doi.org/10.1016/j.wavemoti.2007.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gei, Massimiliano. „Elastic waves guided by a material interface“. European Journal of Mechanics - A/Solids 27, Nr. 3 (Mai 2008): 328–45. http://dx.doi.org/10.1016/j.euromechsol.2007.10.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, Fang Jun, Yue Min Wang, Chuan Jun Shen, Feng Rui Sun und Hong Tao Zhang. „Application of Ultrasonic Guided Waves Testing Method in Coiled Springs“. Applied Mechanics and Materials 127 (Oktober 2011): 449–54. http://dx.doi.org/10.4028/www.scientific.net/amm.127.449.

Der volle Inhalt der Quelle
Annotation:
In this paper,application of defect detection by ultrasonic guided waves in springs has been studied in three aspects,which are theoretical calculation, simulation modeling and experiments.For the springs structure is helix and it can not be directly described easily,less work has been done on theoretical calculation of elastic wave propagation in the springs.The elastic wave equation of the spiral structure is established and calculated numerically here,considering the theoretical calculation helps to quantitative analyze the law of elastic wave propagation in the springs.Then guided waves dispersion relations corresponding is achieved.The experimental results of spring field testing agree well with the theoretical calculations and simulations,indicating the effectiveness of ultrasonic guided waves inspection in springs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fan, Zheng, und Mike J. S. Lowe. „Elastic waves guided by a welded joint in a plate“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, Nr. 2107 (15.04.2009): 2053–68. http://dx.doi.org/10.1098/rspa.2009.0010.

Der volle Inhalt der Quelle
Annotation:
The inspection of large areas of complex structures is a growing interest for industry. An experimental observation on a large welded plate found that the weld can concentrate and guide the energy of a guided wave travelling along the direction of the weld. This is attractive for non-destructive evaluation (NDE) since it offers the potential to quickly inspect for defects such as cracking or corrosion along long lengths of welds. In this paper, a two-dimensional semi-analytical finite-element (SAFE) method is applied to provide a modal study of the elastic waves that are guided by the welded joint in a plate. This brings understanding to the compression wave that was previously observed in the experiment. However, during the study, a shear weld-guided mode, which is non-leaky and almost non-dispersive, has also been discovered. Its characteristics are particularly attractive for NDE, so this is a significant new finding. The properties for both the compression and the shear mode are discussed and compared, and the physical reason for the energy trapping phenomena is then explained. Experiments have been undertaken to validate the existence of the shear weld-guided mode and the accuracy of the FE model, showing very good results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Frehner, Marcel, und Stefan M. Schmalholz. „Finite-element simulations of Stoneley guided-wave reflection and scattering at the tips of fluid-filled fractures“. GEOPHYSICS 75, Nr. 2 (März 2010): T23—T36. http://dx.doi.org/10.1190/1.3340361.

Der volle Inhalt der Quelle
Annotation:
The reflection and scattering of Stoneley guided waves at the tip of a crack filled with a viscous fluid was studied numerically in two dimensions using the finite-element method. The rock surrounding the crack is fully elastic and the fluid filling the crack is elastic in its bulk deformation behavior and viscous in its shear deformation behavior. The crack geometry, especially the crack tip, is resolved in detail by the unstructured finite-element mesh. At the tip of the crack, the Stoneley guided wave is reflected. The amplitude ratio between reflected and incident Stoneley guided wave is calculated from numerical simulations, which provide values ranging between 43% and close to 100% depending on the type of fluid filling the crack (water, oil or hydrocarbon gas), the crack geometry (elliptical or rectangular), and the presence of asmall gas cap at the cracktip. The interference of incident and reflected Stoneley guided waves leads to a node (zero amplitude) at the tip of the crack. At other positions along the crack, this interference increases the amplitude. However, the exponential decay away from the crack makes the Stoneley guided wave difficult to detect at a relatively short distance away from the crack. The part of the Stoneley guided wave that is not reflected is scattered at the crack tip and emitted into the surrounding elastic rock as body waves. For fully saturated cracks, the radiation pattern of these elastic body waves points in every direction from the crack tip. The emitted elastic body waves can allow the detection of Stoneley guided wave-related resonant signals at distances away from the crack where the amplitude of the Stoneley guided wave itself is too small to be detected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lobkis, O. I., und D. E. Chimenti. „Elastic guided waves in plates with rough surfaces“. Applied Physics Letters 69, Nr. 23 (02.12.1996): 3486–88. http://dx.doi.org/10.1063/1.117260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yan, Xiang, Rui Zhu, Guoliang Huang und Fuh-Gwo Yuan. „Focusing guided waves using surface bonded elastic metamaterials“. Applied Physics Letters 103, Nr. 12 (16.09.2013): 121901. http://dx.doi.org/10.1063/1.4821258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Qiao, Song, Xinchun Shang und Ernian Pan. „Elastic guided waves in a coated spherical shell“. Nondestructive Testing and Evaluation 31, Nr. 2 (15.09.2015): 165–90. http://dx.doi.org/10.1080/10589759.2015.1079631.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Cho, Youn Ho, Won Deok Oh und Joon Hyun Lee. „Long-Range Pipe Monitoring with Elastic Guided Waves“. Key Engineering Materials 297-300 (November 2005): 2176–81. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.2176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Treyssède, F., L. Laguerre, P. Cartraud und T. Soulard. „Elastic guided waves in helical multi-wire armors“. Ultrasonics 110 (Februar 2021): 106294. http://dx.doi.org/10.1016/j.ultras.2020.106294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Joly, Patrick, und Jamel Tlili. „Elastic waves guided by an infinite plane crack“. Wave Motion 14, Nr. 1 (August 1991): 25–53. http://dx.doi.org/10.1016/0165-2125(91)90047-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

DHIA, A. S. BONNET-BEN, J. DUTERTE und P. JOLY. „MATHEMATICAL ANALYSIS OF ELASTIC SURFACE WAVES IN TOPOGRAPHIC WAVEGUIDES“. Mathematical Models and Methods in Applied Sciences 09, Nr. 05 (Juli 1999): 755–98. http://dx.doi.org/10.1142/s0218202599000373.

Der volle Inhalt der Quelle
Annotation:
We present here a theoretical study of the guided waves in an isotropic homogeneous elastic half-space whose free surface has been deformed. The deformation is supposed to be invariant in the propagation direction and localized in the transverse ones. We show that finding guided waves amounts to solving a family of 2-D eigenvalue problems set in the cross-section of the propagation medium. Then using the min-max principle for non-compact self-adjoint operators, we prove the existence of guided waves for some particular geometries of the free surface. These waves have a smaller speed than that of the Rayleigh wave in the perfect half-space and a finite transverse energy. Moreover, we prove that the existence results are valid for arbitrary high frequencies in the presence of singularities of the free boundary. Finally, we prove that no guided mode can exist at low frequency, except maybe the fundamental one.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Adams, Samuel D. M., Richard V. Craster und Duncan P. Williams. „Rayleigh waves guided by topography“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, Nr. 2078 (17.10.2006): 531–50. http://dx.doi.org/10.1098/rspa.2006.1779.

Der volle Inhalt der Quelle
Annotation:
We consider wave propagation along the surface of an elastic half-space, whose surface is flat except for a straight, infinite length, ridge or trench that does not vary in its cross-section. We seek to resolve the issue of whether such a perturbed surface can support a trapped wave, whose energy is localized to within some vicinity of the defect, and explain physically how this trapping occurs. First, the trapping is addressed by developing an asymptotic scheme, which exploits a small parameter associated with the surface variation, to perturb about the base state of a flat half-space (which supports a surface wave, as demonstrated by Lord Rayleigh in 1885). We then provide convincing numerical evidence to support the results obtained from the asymptotic scheme; however, no rigorous proof of existence is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bös, Christoph, und Chuanzeng Zhang. „Mutual interactions between bulk waves and guided waves in a quadratic nonlinear elastic medium“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A263. http://dx.doi.org/10.1121/10.0023473.

Der volle Inhalt der Quelle
Annotation:
The high sensitivity of nonlinear ultrasonic waves to the early stages of local material deteriorations makes them ideal candidates for nondestructive material characterization. Guided elastic waves, which can be emitted and received on the same surface, expand the possibilities to inspect inaccessible domains to test and monitor existing structures. The pure measurement of the amplitude of the second harmonic has only limited significance, since it is difficult to distinguish between the rather weak material nonlinearity and the nonlinearities from the technical equipment. This can be avoided by mixing two ultrasonic waves of different frequencies, which results in superposed harmonics at these frequencies. In this study, the mutual interactions between bulk waves and guided waves in a quadratic nonlinear elastic medium are investigated by highly efficient computations. In addition, numerical examples for the wave interaction in a finite area with nonlinearity in an otherwise linearly elastic host medium are presented and discussed to explore the effects of individual parameters as well as possible experimental implementation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rokhlin, S. I. „Application of elastic guided waves for interface properties characterization“. Journal of the Acoustical Society of America 77, S1 (April 1985): S4. http://dx.doi.org/10.1121/1.2022373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Teidj, Sara. „Mathematical modeling on the propagation of guided elastic waves“. International Review of Applied Sciences and Engineering 11, Nr. 2 (August 2020): 135–39. http://dx.doi.org/10.1556/1848.2020.20017.

Der volle Inhalt der Quelle
Annotation:
AbstractThe main cause of train derailment is related to transverse defects that arise in the railhead. These consist typically of opened or internal flaws that develop generally in a plane that is orthogonal to the rail direction. Most of the actual inspection techniques of rails relay on eddy currents, electromagnetic induction, and ultrasounds. Ultrasounds based testing is performed according to the excitation-echo procedure [1]. It is conducted conventionally by using a contact excitation probe that rolls on the railhead or by a contact-less system using a laser as excitation and air-coupled acoustic sensors for wave reception. The ratio of false predictions either positive or negative is yet too high due to the low accuracy of the actual devices. The inspection rate is also late; new numerical method has been developed in this context: The semi-analytical finite element method SAFE. This method has been applied in the case of anisotropic media [2], composite plates [3] and media in contact with fluids [4]. This method has been used successfully for several structures and especially in the case of beams of any cross-section such as rails that are the subject of this work and we were interested in wave propagation in waveguides of any arbitrary cross-section in the case of beams or rails.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ma, Pyung Sik, Hyung Jin Lee und Yoon Young Kim. „Dispersion suppression of guided elastic waves by anisotropic metamaterial“. Journal of the Acoustical Society of America 138, Nr. 1 (Juli 2015): EL77—EL82. http://dx.doi.org/10.1121/1.4922766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Adams, Samuel D. M., Richard V. Craster und Sebastien Guenneau. „Guided and standing Bloch waves in periodic elastic strips“. Waves in Random and Complex Media 19, Nr. 2 (08.06.2009): 321–46. http://dx.doi.org/10.1080/17455030802541566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Charles, C., B. Bonello und F. Ganot. „Propagation of guided elastic waves in 2D phononic crystals“. Ultrasonics 44 (Dezember 2006): e1209-e1213. http://dx.doi.org/10.1016/j.ultras.2006.05.096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Gao, Min, und Zhifei Shi. „A wave guided barrier to isolate antiplane elastic waves“. Journal of Sound and Vibration 443 (März 2019): 155–66. http://dx.doi.org/10.1016/j.jsv.2018.11.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sotiropoulos, D. A. „Guided elastic waves in a pre-stressed compressible interlayer“. Ultrasonics 38, Nr. 1-8 (März 2000): 821–23. http://dx.doi.org/10.1016/s0041-624x(99)00221-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Tang, Liguo, und Shengxing Liu. „Guided elastic waves in infinite free-clamped hollow cylinders“. Progress in Natural Science 19, Nr. 3 (März 2009): 313–20. http://dx.doi.org/10.1016/j.pnsc.2008.06.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Adamou, A. T. I., und R. V. Craster. „Spectral methods for modelling guided waves in elastic media“. Journal of the Acoustical Society of America 116, Nr. 3 (September 2004): 1524–35. http://dx.doi.org/10.1121/1.1777871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Joly, Patrick, und Ricardo Weder. „New results for guided waves in heterogeneous elastic media“. Mathematical Methods in the Applied Sciences 15, Nr. 6 (August 1992): 395–409. http://dx.doi.org/10.1002/mma.1670150603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Samsonov, Alexander M., Irina V. Semenova und Fedor E. Garbuzov. „Nonlinear guided bulk waves in heterogeneous elastic structural elements“. International Journal of Non-Linear Mechanics 94 (September 2017): 343–50. http://dx.doi.org/10.1016/j.ijnonlinmec.2017.01.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Fu, Y. B., G. A. Rogerson und W. F. Wang. „Surface waves guided by topography in an anisotropic elastic half-space“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, Nr. 2149 (08.01.2013): 20120371. http://dx.doi.org/10.1098/rspa.2012.0371.

Der volle Inhalt der Quelle
Annotation:
We consider the propagation of free surface waves on an elastic half-space that has a localized geometric inhomogeneity perpendicular to the direction of wave propagation (such waves are known as topography-guided surface waves). Our aim is to investigate how such a weak inhomogeneity modifies the surface-wave speed slightly. We first recover previously known results for isotropic materials and then present additional results for a generally anisotropic elastic half-space assuming only one plane of material symmetry. It is shown that a topography-guided surface wave in the present context may or may not propagate depending on a number of factors. In particular, they cannot propagate if the original two-dimensional surface wave on a flat half-space is supersonic with respect to the speed of anti-plane shear waves. For the case when a topography-guided surface wave may exist, the existence and computation of wave speed correction is reduced to the solution of a simple eigenvalue problem whose properties are previously well understood. As a by-product of our analysis, we deduce that there exists at least one topography-guided surface wave on an isotropic elastic half-space, and that it is unique when the geometric inhomogeneity has sufficiently small amplitude.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hu, Liang-Zie, George A. McMechan und Jerry M. Harris. „Elastic finite-difference modeling of cross-hole seismic data“. Bulletin of the Seismological Society of America 78, Nr. 5 (01.10.1988): 1796–806. http://dx.doi.org/10.1785/bssa0780051796.

Der volle Inhalt der Quelle
Annotation:
Abstract Cross-hole seismic data exhibit unique characteristics not seen in surface survey data or even in vertical seismic profile data. These are, to a large extent, due to the near-horizontal propagation involved. Transmitted, reflected, evanescent, guided, and converted waves are all prominent; these require an elastic algorithm for realistic simulation. Elastic finite-differences are used to synthesize responses (both fixed-time snapshots and seismogram profiles) for a series of two-dimensional models of increasing complexity. Special emphasis is given to guided waves in continuous and segmented low-velocity zones.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Liou, Hong-Cin, Fabrizio Sabba, Aaron I. Packman, George Wells und Oluwaseyi Balogun. „Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography“. Soft Matter 15, Nr. 4 (2019): 575–86. http://dx.doi.org/10.1039/c8sm01902a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Yu, J. G., und X. F. Dong. „Elastic Waves in Piezoelectric Spherical Curved Plates“. Key Engineering Materials 455 (Dezember 2010): 672–77. http://dx.doi.org/10.4028/www.scientific.net/kem.455.672.

Der volle Inhalt der Quelle
Annotation:
Based on linear three-dimensional piezoelasticity, an orthogonal polynomial approach is used for determining the elastic wave characteristics of piezoelectric spherical curved plates. The displacement components and electric potential, expanded in a series of Legendre polynomials, are introduced into the governing equations along with position-dependent material constants so that the solution of the wave equation is reduced to an eigenvalue problem. Guided wave dispersion curves for PZT-4 spherical curved plates are calculated. Corresponding mechanical displacement and electric potential distributions are illustrated. The influence of the ratio of radius to thickness on the wave characteristics is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lobkis, O. I., und D. E. Chimenti. „Elastic guided waves in plates with surface roughness. II. Experiments“. Journal of the Acoustical Society of America 102, Nr. 1 (Juli 1997): 150–59. http://dx.doi.org/10.1121/1.419773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bi-Xing, Zhang, Cui Han-Yin, Xiao Bo-Xun und Zhang Cheng-Guang. „Guided Waves in a Multi-Layered Cylindrical Elastic Solid Medium“. Chinese Physics Letters 24, Nr. 10 (28.09.2007): 2883–86. http://dx.doi.org/10.1088/0256-307x/24/10/048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Radzieński, M., Ł. Doliński, M. Krawczuk, A. Żak und W. Ostachowicz. „Application of RMS for damage detection by guided elastic waves“. Journal of Physics: Conference Series 305 (19.07.2011): 012085. http://dx.doi.org/10.1088/1742-6596/305/1/012085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Żak, A., M. Radzieński, M. Krawczuk und W. Ostachowicz. „Damage detection strategies based on propagation of guided elastic waves“. Smart Materials and Structures 21, Nr. 3 (17.02.2012): 035024. http://dx.doi.org/10.1088/0964-1726/21/3/035024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tang, Xiao-Ming, Chen Li und Douglas J. Patterson. „A curve-fitting technique for determining dispersion characteristics of guided elastic waves“. GEOPHYSICS 75, Nr. 3 (Mai 2010): E153—E160. http://dx.doi.org/10.1190/1.3420736.

Der volle Inhalt der Quelle
Annotation:
We have developed a novel curve-fitting method to estimate dispersion characteristics of guided elastic waves and investigate its application to field wireline and logging while drilling (LWD) acoustic data processing. In an elastic waveguide such as a fluid-filled borehole with a logging tool, the frequency dispersion of a guided-wave mode is characterized by a monotonically varying dispersion curve bounded by its low- and high-frequency limits. The detailed behavior of the curves relates to various elastic/acoustic parameters of the complicated waveguide structure. The novelty of the proposed technique is that it simulates the multiparameter dispersion curve using a simple analytical function that has only four parameters. By adjusting the four parameters to fit the actual wave dispersion data, the wave’s dispersion characteristics can be satisfactorily determined. The result of this simple approach leads to several important applications in acoustic logging. The first is to correct the dispersion effect in the shear-wave velocity from wireline dipole acoustic logging. The second application obtains P-wave velocity from the dispersive leaky compressional-wave data from wireline or LWD measurements. Third, the technique is applied to obtain shear-wave velocity from LWD quadrupole shear-wave logging. Finally, the technique is applicable to layered waveguide structures encountered in surface seismic exploration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mukdadi, O. M., S. K. Datta und M. L. Dunn. „Elastic Guided Waves in a Layered Plate With a Rectangular Cross Section“. Journal of Pressure Vessel Technology 124, Nr. 3 (26.07.2002): 319–25. http://dx.doi.org/10.1115/1.1491582.

Der volle Inhalt der Quelle
Annotation:
Ultrasonic guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) are studied in this paper. A semi-analytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the long dimension of the plate is used. The method is applicable to an arbitrary number of layers of anisotropic properties and is similar to that used earlier to study guided waves in layered anisotropic plates of infinite width. Numerical results are presented for acoustic phonon modes of quasi-one-dimensional (QID) wires. For homogeneous wires, these agree well with recently reported results for dispersion of these modes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Karunasena, W. M., R. L. Bratton, S. K. Datta und A. H. Shah. „Elastic Wave Propagation in Laminated Composite Plates“. Journal of Engineering Materials and Technology 113, Nr. 4 (01.10.1991): 411–18. http://dx.doi.org/10.1115/1.2904119.

Der volle Inhalt der Quelle
Annotation:
A stiffness method and an analytical method have been used to study the dispersion characteristics of guided waves in laminated composite plates. Both cross-ply and angle-ply plates have been considered in the analysis. The objective of the study is to analyze the effect of fiber orientation, ply layout configuration, and number of layers on the dispersion characteristics. A Rayleigh-Ritz type of approximation of the through-thickness variation of the displacements that maintain continuity of displacements and tractions at the interfaces between the layers has been used in the stiffness method. The analytical method solves the exact dispersion relation of the laminated plate by using the Muller’s method with initial guesses obtained through the stiffness method. Both methods are applicable to plates with arbitrary number of layers having distinct mechanical properties. Numerical results presented show strong influence of anisotropy on the guided waves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mal, Ajit K., Pei-cheng Xu und Yoseph Bar-Cohen. „Leaky Lamb Waves for the Ultrasonic Nondestructive Evaluation of Adhesive Bonds“. Journal of Engineering Materials and Technology 112, Nr. 3 (01.07.1990): 255–59. http://dx.doi.org/10.1115/1.2903319.

Der volle Inhalt der Quelle
Annotation:
The critical role played by interface zones in the fracture and failure of composites and other bonded materials is well known. However, the existing nondestructive evaluation methods are not capable of yielding useful quantitative information on either elastic or strength related properties of the interface. The authors are investigating the feasibility of applying an ultrasonic method to determine some of the interface properties nondestructively. The method uses guided waves and is based on the fact that the dispersive properties of these waves are strongly affected by the elastic properties of the interface. A coordinated theoretical and experimental program of research has revealed that the correlation between the interfacial properties and the phase velocity of the guided waves is quite strong and is identifiable at least in laboratory specimens. Some recent results of this research are reported in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gautesen, A. K. „Surface Waves Guided by the Exterior of a Rectangular Elastic Solid“. Journal of Applied Mechanics 53, Nr. 2 (01.06.1986): 379–81. http://dx.doi.org/10.1115/1.3171767.

Der volle Inhalt der Quelle
Annotation:
We show that surface waves can be guided on the exterior of an isotropic elastic bar with a rectangular cross section. We assume that the dimensionless wavenumber is sufficiently large that elastodynamic ray theory is valid. Dispersion relations are obtained and representative curves for various cross sections are shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Park, Kyung-Jo. „Characterization and Detection of Sludge inside Pipes Using Guided Elastic Waves“. Journal of Power System Engineering 26, Nr. 1 (28.02.2022): 65–71. http://dx.doi.org/10.9726/kspse.2022.26.1.065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Fraguela Collar, A. „Guided waves in a fluid layer on an elastic irregular bottom“. Publicacions Matemàtiques 40 (01.07.1996): 243–76. http://dx.doi.org/10.5565/publmat_40296_02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lobkis, O. I., und D. E. Chimenti. „Elastic guided waves in plates with surface roughness. I. Model calculation“. Journal of the Acoustical Society of America 102, Nr. 1 (Juli 1997): 143–49. http://dx.doi.org/10.1121/1.419772.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Pelts, S. P., und J. L. Rose. „Source influence parameters on elastic guided waves in an orthotropic plate“. Journal of the Acoustical Society of America 99, Nr. 4 (April 1996): 2124–29. http://dx.doi.org/10.1121/1.415399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Guillet, Arnaud, Mounsif Ech Cherif El Kettani und Francine Luppe. „Guided waves’ propagation in an elastic plate of linearly varying thickness“. Journal of the Acoustical Society of America 105, Nr. 2 (Februar 1999): 1340. http://dx.doi.org/10.1121/1.426357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ishii, Yosuke, Shiro Biwa und Tadaharu Adachi. „Non-collinear interaction of guided elastic waves in an isotropic plate“. Journal of Sound and Vibration 419 (April 2018): 390–404. http://dx.doi.org/10.1016/j.jsv.2018.01.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yan, Dong-Jia, A.-Li Chen, Yue-Sheng Wang, Chuanzeng Zhang und Mikhail Golub. „Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites“. European Journal of Mechanics - A/Solids 66 (November 2017): 158–67. http://dx.doi.org/10.1016/j.euromechsol.2017.07.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bochud, Nicolas, Jérôme Laurent, François Bruno, Aurélien Baelde, Daniel Royer und Claire Prada. „Toward real-time assessment of material properties using elastic guided waves“. Journal of the Acoustical Society of America 141, Nr. 5 (Mai 2017): 3904. http://dx.doi.org/10.1121/1.4988795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie