Auswahl der wissenschaftlichen Literatur zum Thema „Guidance and Control Algorithm Design“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Guidance and Control Algorithm Design" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Guidance and Control Algorithm Design"

1

Ha, Cheol-Keun, und Hyoung-Sik Choi. „Design of Autolanding Guidance and Control Algorithm Using Singular Perturbation“. Journal of Control, Automation and Systems Engineering 11, Nr. 8 (01.08.2005): 726–32. http://dx.doi.org/10.5302/j.icros.2005.11.8.726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Leng, Gerard. „Guidance Algorithm Design: A Nonlinear Inverse Approach“. Journal of Guidance, Control, and Dynamics 21, Nr. 5 (September 1998): 742–46. http://dx.doi.org/10.2514/2.4300.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ali, Syed Ussama, Raza Samar, M. Zamurad Shah, Aamer I. Bhatti und Khalid Munawar. „Higher-order sliding mode based lateral guidance for unmanned aerial vehicles“. Transactions of the Institute of Measurement and Control 39, Nr. 5 (23.12.2015): 715–27. http://dx.doi.org/10.1177/0142331215619972.

Der volle Inhalt der Quelle
Annotation:
A nonlinear sliding mode based scheme is developed for lateral guidance of unmanned aerial vehicles. The guidance and control system is considered as an inner and outer loop design problem, the outer guidance loop generates commands for the inner control loop to follow. Control loop dynamics is considered during derivation of the guidance logic, along with saturation constraints on the guidance commands. A nonlinear sliding manifold is selected for guidance logic design, the guidance loop generates bank angle commands for the inner roll control loop to follow. The real twisting algorithm, a higher order sliding mode algorithm is used for guidance logic design. Existence of the sliding mode along with boundedness of the guidance command is proved to ensure that controls are not saturated for large track errors. The proposed logic also contains an element of anticipatory or feed-forward control, which enables tight tracking for sharply curving paths. Efficacy of the proposed method is verified by flight testing on a scaled YAK-54 unmanned aerial vehicle. Flight results demonstrate robustness and effectiveness of the proposed guidance scheme in the presence of disturbances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chao, Tao, Denghui Zhang, Songyan Wang und Ping Ma. „Integrated guidance and control design considering system uncertainty“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, Nr. 6 (24.05.2018): 2278–90. http://dx.doi.org/10.1177/0954410018776512.

Der volle Inhalt der Quelle
Annotation:
The hypersonic vehicle has the characteristics of strong coupling, high uncertainty and complex nonlinearity, leading to an unsatisfactory control performance with the traditional design method. In this paper, an integrated guidance and control design approach is proposed to cope with this problem. A time-varying longitudinal integrated guidance and control model is first formulated, and then the overall uncertainty consisting of the un-modeled dynamic, parameter uncertainty and external disturbance is taken into account. A novel finite-time extended state observer is developed to estimate and compensate it in real time. Furthermore, an integrated guidance and control algorithm utilizing back-stepping method and the dynamic inverse is put forward. It has been theoretically proved that the finite-time extended state observer system and the cascade system are globally finite-time stable. Numerical simulation results under different kinds of uncertainty with different amplitude and frequency are presented to illustrate the effectiveness and feasibility of the proposed approach. The proposed integrated guidance and control possesses a better convergence performance and stronger disturbance rejection property in existence of the mismatched uncertainty and parameter uncertainty.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peng, Huei, und Masayoshi Tomizuka. „Preview Control for Vehicle Lateral Guidance in Highway Automation“. Journal of Dynamic Systems, Measurement, and Control 115, Nr. 4 (01.12.1993): 679–86. http://dx.doi.org/10.1115/1.2899196.

Der volle Inhalt der Quelle
Annotation:
The continuous time deterministic optimal preview control algorithm is applied to the lateral guidance of a vehicle for an automated highway. In the lateral guidance problem, the front wheel steering angle of the vehicle is controlled so that the vehicle follows the center for a lane with small tracking error and maintains good ride quality simultaneously. A preview control algorithm is obtained by minimizing a quadratic performance index which includes terms representing the passenger ride quality as well as the lateral tracking error, each of these terms is multiplied by a frequency dependent weight. This design method is known as a frequency shaped linear quadratic (FSLQ) optimal control approach. It permits incorporating frequency domain design specifications such as high frequency robustness and ride quality in the optimal controller design. It is shown that the optimal preview control law consists of a feedback control term and two feedforward control terms. The feedback term is exactly the same as that of traditional LQ control algorithm. The feedforward preview control action significantly improves the tracking performance and ride quality. Frequency-domain analyses, as well as numerical simulation results, show the improvements achieved by using the preview control algorithm in both the frequency and time domains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dentis, Matteo, Elisa Capello und Giorgio Guglieri. „A Novel Concept for Guidance and Control of Spacecraft Orbital Maneuvers“. International Journal of Aerospace Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/7695257.

Der volle Inhalt der Quelle
Annotation:
The purpose of this paper is the design of guidance and control algorithms for orbital space maneuvers. A 6-dof orbital simulator, based on Clohessy-Wiltshire-Hill equations, is developed in C language, considering cold gas reaction thrusters and reaction wheels as actuation system. The computational limitations of on-board computers are also included. A combination of guidance and control algorithms for an orbital maneuver is proposed: (i) a suitably designed Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm is adopted for the guidance and (ii) a linear quadratic regulator (LQR) is used for the attitude control. The proposed approach is verified for different cases, including external environment disturbances and errors on the actuation system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tran, Huy Ngoc, Thanh Nguyen Nhut Pham und Bao Hong Thai Vo. „A study on tracking controller design for unmanned surface vehicles using magnetic coupling thruster“. Science and Technology Development Journal 20, K5 (31.08.2017): 64–72. http://dx.doi.org/10.32508/stdj.v20ik5.1161.

Der volle Inhalt der Quelle
Annotation:
Controlling the unmanned surface vehicles to follow the object or define trajectory have many important applications in the field as military, survey quality environment so this problem has been much research on the world. This report represents the method to control the unmanned surface vehicles which use thruster with coupling follow square or zig-zag trajectories using the Line of Sight (LOS) algorithm combined with the Backstepping Controller. The system consists of three main blocks, Guidance - Control - Ship. Guidance will help to select waypoints to create the trajectory the use the LOS algorithm with lookahead distance to adjust and calculate the desired heading angle ψ. Control with the Backstepping algorithm will calculate the force and moment to apply to the dynamic model of the Ship. The position and heading angle of the vehicles will be feedback to the two Guidance-Control blocks for calculation and updating. The effectiveness of the algorithm will be presented in simulation results with MATLAB / SIMULINK
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fu, Zhenhua, Kuanqiao Zhang, Qintao Gan und Suochang Yang. „Integrated Guidance and Control with Input Saturation and Impact Angle Constraint“. Discrete Dynamics in Nature and Society 2020 (15.09.2020): 1–19. http://dx.doi.org/10.1155/2020/5917983.

Der volle Inhalt der Quelle
Annotation:
Aiming at the problem of impact angle constraint and input saturation, an integrated guidance and control (IGC) algorithm with impact angle constraint and input saturation is proposed. A three-channel independent design model of missile IGC with impact angle constraint is established, and an extended state observer with fast finite-time convergence is designed to estimate and compensate model errors and coupling relationship between channels. Based on the nonsingular terminal sliding mode control and backstepping control, the IGC three-channel independent design is completed. Nussbaum function and an auxiliary system are introduced to deal with the input saturation. The Lyapunov function is constructed to prove the finite-time convergence of the IGC algorithm. The missile six-degree-of-freedom simulation results show the effectiveness and superiority of the IGC algorithm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kim, Kangsoo, und Tamaki Ura. „Applied Model-Based Analysis and Synthesis for the Dynamics, Guidance, and Control of an Autonomous Undersea Vehicle“. Mathematical Problems in Engineering 2010 (2010): 1–23. http://dx.doi.org/10.1155/2010/149385.

Der volle Inhalt der Quelle
Annotation:
Model-based analysis and synthesis applied to the dynamics, guidance, and control of an autonomous undersea vehicle are presented. As the dynamic model for describing vehicle motion mathematically, the equations of motion are derived. The stability derivatives in the equations of motion are determined by a simulation-based technique using computational fluid dynamics analysis. The dynamic model is applied to the design of the low-level control systems, offering model-based synthetic approach in dynamics and control applications. As an intelligent navigational strategy for undersea vehicles, we present the optimal guidance in environmental disturbances. The optimal guidance aims at the minimum-time transit of a vehicle in an environmental flow disturbance. In this paper, a newly developed algorithm for obtaining the numerical solution of the optimal guidance law is presented. The algorithm is a globally working procedure deriving the optimal guidance in any deterministic environmental disturbance. As a fail-safe tactic in achieving the optimal navigation in environments of moderate uncertainty, we propose the quasi-optimal guidance. Performances of the optimal and the quasi-optimal guidances are demonstrated by the simulated navigations in a few environmental disturbances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Capello, Elisa, Giorgio Guglieri und Gianluca Ristorto. „Guidance and control algorithms for mini UAV autopilots“. Aircraft Engineering and Aerospace Technology 89, Nr. 1 (03.01.2017): 133–44. http://dx.doi.org/10.1108/aeat-10-2014-0161.

Der volle Inhalt der Quelle
Annotation:
Purpose The aim of this paper is the implementation and validation of control and guidance algorithms for unmanned aerial vehicle (UAV) autopilots. Design/methodology/approach The path-following control of the UAV can be separated into different layers: inner loop for pitch and roll attitude control, outer loop on heading, altitude and airspeed control for the waypoints tracking and waypoint navigation. Two control laws are defined: one based on proportional integrative derivative (PID) controllers both for inner and outer loops and one based on the combination of PIDs and an adaptive controller. Findings Good results can be obtained in terms of trajectory tracking (based on waypoints) and of parameter variations. The adaptive control law guarantees smoothing responses and less oscillations and glitches on the control deflections. Practical implications The proposed controllers are easily implementable on-board and are computationally efficient. Originality/value The algorithm validation via hardware in the loop simulations can be used to reduce the platform set-up time and the risk of losing the prototype during the flight tests.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Guidance and Control Algorithm Design"

1

Chomel, Christina T. (Christina Tvrdik) 1973. „Design of a robust integrated guidance and control algorithm for the landing of an autonomous reusable launch vehicle“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9940.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bruno, Liam T. „Three Axis Attitude Control System Design and Analysis Tool Development for the Cal Poly CubeSat Laboratory“. DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2288.

Der volle Inhalt der Quelle
Annotation:
The Cal Poly CubeSat Laboratory (CPCL) is currently facing unprecedented engineering challenges—both technically and programmatically—due to the increasing cost and complexity of CubeSat flight missions. In responding to recent RFPs, the CPCL has been forced to find commercially available solutions to entire mission critical spacecraft subsystems such as propulsion and attitude determination & control, because currently no in-house options exist for consideration. The commercially available solutions for these subsystems are often extremely expensive and sometimes provide excessively good performance with respect to mission requirements. Furthermore, use of entire commercial subsystems detracts from the hands-on learning objectives of the CPCL by removing engineering responsibility from students. Therefore, if these particular subsystems can be designed, tested, and integrated in-house at Cal Poly, the result would be twofold: 1) the space of missions supportable by the CPCL under tight budget constraints will grow, and 2) students will be provided with unique, hands-on guidance, navigation, and control learning opportunities. In this thesis, the CPCL’s attitude determination and control system design and analysis toolkit is significantly improved to support in-house ADCS development. The toolkit—including the improvements presented in this work—is then used to complete the existing, partially complete CPCL ADCS design. To fill in missing gaps, particular emphasis is placed on guidance and control algorithm design and selection of attitude actuators. Simulation results show that the completed design is competitive for use in a large class of small satellite missions for which pointing accuracy requirements are on the order of a few degrees.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gagliano, Joseph R. „Orbital Constellation Design and Analysis Using Spherical Trigonometry and Genetic Algorithms: A Mission Level Design Tool for Single Point Coverage on Any Planet“. DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1877.

Der volle Inhalt der Quelle
Annotation:
Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will be evaluated on a normalized fitness scale to determine optimization. The performance objective functions are based on average coverage time, average revisits, and a minimized number of satellites. To adhere to a wider audience, this design tool was written using traditional Matlab, and does not require any additional toolboxes. To create an efficient design tool, spherical trigonometry propagation will be utilized to evaluate constellations for both coverage time and revisits over a single target. This approach was chosen to avoid solving complex ordinary differential equations for each satellite over a long period of time. By converting the satellite and planetary target into vectors of latitude and longitude in a common celestial sphere (i.e. ECI), the angle can be calculated between each set of vectors in three-dimensional space. A comparison of angle against a maximum view angle, , controlled by the elevation angle of the target and the satellite’s altitude, will determine coverage time and number of revisits during a single orbital period. Traditional constellations are defined by an altitude (a), inclination (I), and Walker Delta Pattern notation: T/P/F. Where T represents the number of satellites, P is the number of orbital planes, and F indirectly defines the number of adjacent planes with satellite offsets. Assuming circular orbits, these five parameters outline any possible constellation design. The optimization algorithm will use these parameters as evolutionary traits to iterate through the solutions space. This process will pass down the best traits from one generation to the next, slowly evolving and converging the population towards an optimal solution. Utilizing tournament style selection, multi-parent recombination, and mutation techniques, each generation of children will improve on the last by evaluating the three performance objectives listed. The evolutionary algorithm will iterate through 100 generations (G) with a population (n) of 100. The results of this study explore optimal constellation designs for seven targets evenly spaced from 0° to 90° latitude on Earth, Mars and Jupiter. Each test case reports the top ten constellations found based on optimal fitness. Scatterplots of the constellation design solution space and the multi-objective fitness function breakdown are provided to showcase convergence of the evolutionary genetic algorithm. The results highlight the ratio between constellation altitude and planetary radius as the most influential aspects for achieving optimal constellations due to the increased field of view ratio achievable on smaller planetary bodies. The multi-objective fitness function however, influences constellation design the most because it is the main optimization driver. All future constellation optimization problems should critically determine the best multi-objective fitness function needed for a specific study or mission.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hallberg, Eric N. „On integrated plant, control and guidance design“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA341957.

Der volle Inhalt der Quelle
Annotation:
Dissertation (Ph.D. in Aeronautics and Astronautics) Naval Postgraduate School, September 1997.
"September 1997." Dissertation supervisor(s): Isaac I. Kaminer. Includes bibliographical references (p. 187-190). Also available online.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moon, Jongki. „Mission-based guidance system design for autonomous UAVs“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31797.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Prasad, JVR; Committee Member: Costello, Mark; Committee Member: Johnson, Eric; Committee Member: Schrage, Daniel; Committee Member: Vela, Patricio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brown, Derek William. „Systolic algorithm design for control and signal processing“. Thesis, Queen's University Belfast, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Isiyel, Kadir. „Autopilot Design And Guidance Control Of Ulisar Uuv (unmanned Underwater Vehicle)“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608867/index.pdf.

Der volle Inhalt der Quelle
Annotation:
Unmanned Underwater Vehicles (UUV) in open-seas are highly nonlinear with system motions. Because of the complex interaction of the body with environment it is difficult to control them efficiently. Linearization is applied to system in order to design controllers developed for linear systems. To overcome the effects of disturbances, a mathematical model which will compensate all disturbances and effects of linearization is required. In this study first a mathematical model is formed wherein the linear and nonlinear hydrodynamic coeffi- cients are calculated with strip theory. After the basic mathematical model is developed, it is simplified and decoupled into speed, steering and diving subsystems. Consequently PID (Proportional Derivative Integral), SMC (SlidingMode Control) and LQR (Linear Quadratic Regulator)/LQG (Linear Quadratic Gaussian) control methods can be applied on each subsystem to design controllers. Some of the system parameters can be estimated from state vector data based on measurements using the methods of linear sequential estimation and genetic algorithms. As for the final part of the study, an online obstacle avoidance algorithm which avoids local optimums using Boolean operators is presented. In addition a simple guidance algorithm is suggested for waypoint navigation. Due to the fact that ULISAR UUV is still on construction phase, we were unable to test our algorithms. But in the near future, we plan to study all these algorithms on the UUV ULISAR.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Morgan, H. P. „Quantitative design guidance on smoke control in shopping malls and atria“. Thesis, London South Bank University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Ming-Yan. „Performance analysis and enhancement of proportional navigation guidance systems /“. Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09ENS/09ensl693.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Balasubramanian, Balasundar. „A new guidance trajectory generation algorithm for unmanned systems incorporating vehicle dynamics and constraints“. Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36430.

Der volle Inhalt der Quelle
Annotation:
We present a new trajectory generation algorithm for autonomous guidance and control of unmanned vehicles from a given starting point to a given target location. We build and update incomplete a priori maps of the operating environment in real time using onboard sensors and compute level sets on the map reflecting the minimal cost of traversal from the current vehicle location to the goal. We convert the trajectory generation problem into a finite-time-horizon optimal control problem using the computed level sets as terminal costs in a receding horizon framework and transform it into a simpler nonlinear programming problem by discretization of the candidate control and state histories. We ensure feasibility of the generated trajectories by constraining the solution of the optimization problem using a simplified vehicle model. We provide strong performance guarantees by checking for stability of the algorithm through the test of matching conditions at the end of each iteration. The algorithm thus explicitly incorporates the vehicle dynamics and constraints and generates trajectories realizable by the vehicle in the field. Successful preliminary field demonstrations and complete simulation results for a marine unmanned surface vehicle demonstrate the efficacy of the proposed approach for fast operations in poorly characterized riverine environments.
Master of Science
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Guidance and Control Algorithm Design"

1

Froncillo, Steven J. Design of digital control algorithms for unmanned air vehicles. Monterey, Calif: Naval Postgraduate School, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Zhonghua. Smart TCT: An efficient algorithm for supervisory control design. Ottawa: National Library of Canada, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hallberg, Eric N. On integrated plant, control and guidance design. Monterey, Calif: Naval Postgraduate School, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Allen, Cheryl L. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods. Hampton, Va: Langley Research Center, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Danley, D. R. Development of photovoltaic-diesel hybrid system design incorporating advanced control algorithm. Ottawa: The Branch, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chapman, David W. Discovering the art of relationship: Urban design, aesthetic control and design guidance. Birmingham: Faculty of the Built Environment, Birmingham Polytechnic, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Leondes, Cornelius T. Analysis, design and synthesis methods for guidance and control systems. Neuilly sur Seine, France: AGARD, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Development, North Atlantic Treaty Organization Advisory Group for Aerospace Research and. Analysis, design and synthesis methods for guidance and control systems. Neuilly-sur-Seine: AGARD, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Industrial statistics: Practical methods and guidance for improved performance. Hoboken, N.J: Wiley, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Knox, Charles E. Ground-based time-guidance algorithm for control of airplanes in a time-metered air traffic control environment: A piloted simulation study. Hampton, Va: Langley Research Center, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Guidance and Control Algorithm Design"

1

Hochstrasser, Markus, Simon P. Schatz, Kajetan Nürnberger, Markus Hornauer, Stephan Myschik und Florian Holzapfel. „Aspects of a Consistent Modeling Environment for DO-331 Design Model Development of Flight Control Algorithms“. In Advances in Aerospace Guidance, Navigation and Control, 69–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65283-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Suresh, B. N., und K. Sivan. „Navigation Guidance and Control System“. In Integrated Design for Space Transportation System, 581–661. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2532-4_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Isermann, Rolf. „Computer-aided Control Algorithm Design“. In Digital Control Systems, 266–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-86420-9_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liu, Jinkun. „Intelligent Search Algorithm Design“. In Intelligent Control Design and MATLAB Simulation, 235–66. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5263-7_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hoffmann, Arndt, Kai Loftfield und Robert Luckner. „Broadband Wind Estimation Algorithm for Gust Load Alleviation“. In Advances in Aerospace Guidance, Navigation and Control, 321–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19817-5_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kownacki, Cezary, und Daniel Ołdziej. „Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles“. In Advances in Aerospace Guidance, Navigation and Control, 415–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17518-8_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Theuma, Kevin, und David Zammit Mangion. „An Image Processing Algorithm for Ground Navigation of Aircraft“. In Advances in Aerospace Guidance, Navigation and Control, 381–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17518-8_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tokhi, M. O., M. A. Hossain und M. H. Shaheed. „Algorithm Analysis and Design“. In Parallel Computing for Real-time Signal Processing and Control, 137–74. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0087-4_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Onken, Reiner, und Axel Schulte. „Introductory Survey on Operational Guidance and Control Systems“. In System-Ergonomic Design of Cognitive Automation, 7–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03135-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Schallig, S. A. V., Q. P. Chu, S. W. Rhee und E. van Kampen. „Maximum Null Motion Algorithm for Single Gimbal Control Moment Gyroscopes“. In Advances in Aerospace Guidance, Navigation and Control, 689–707. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65283-2_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Guidance and Control Algorithm Design"

1

Park, Kihong, und Mark Psiaki. „Design and test of a parallel trajectory optimization algorithm“. In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3636.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Calise, Anthony, Nahum Melamed, Seungjae Lee, Anthony Calise, Nahum Melamed und Seungjae Lee. „Design and evaluation of a 3-D optimal ascent guidance algorithm“. In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perhinschi, Mario, und Mario Perhinschi. „A modified genetic algorithm for the design of autonomous helicopter control system“. In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lee, Dongwoo, Seung-Keun Kim und Jinyoung Suk. „Design of a Track Guidance Algorithm for Formation Flight of UAVs“. In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

DOTY, KARL. „A multiple algorithm solution to the AIAA GN & C Artificial Intelligence Design Challenge“. In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hoffmann, Falk. „FCS Notch Filter Design Using Genetic/Evolutionary Algorithm“. In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Junbo, Zhang Ren, Zixuan Liang und Zihao Xiong. „Design of new predictive guidance algorithm via fuzzy techniques“. In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6057648.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lombaerts, Thomas, Gertjan Looye, Joost Ellerbroek und Mitchell Rodriguez y Martin. „Design and Piloted Simulator Evaluation of Adaptive Safe Flight Envelope Protection Algorithm“. In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kerr, Murray, Rodrigo Haya, Luis Peñín, Gabriele De Zaiacomo, David Mostaza und Victor Marco. „IXV Re-entry Guidance, Control & DRS Triggering: Algorithm Design and Assessment“. In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bai, Xiaoli, James Turner und John Junkins. „Bang-bang Control Design by Combing Pseudospectral Method with a novel Homotopy Algorithm“. In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5955.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Guidance and Control Algorithm Design"

1

Dohner, J. L. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/573345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gebre-Egziabher, Demoz. An Integrated Design Methodology for Nanosat Navigation Guidance and Control Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada474558.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weinger, Matthew B., und Clinton Brown. Meta-Level Design Guidance and Operator Performance Measures for Hybrid Control Rooms. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Thomas Ulrich, Ronald Boring, William Phoenix, Emily Dehority, Tim Whiting, Jonathan Morrell und Rhett Backstrom. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1082368.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hernandez, J., R. Smith, V. Petty und J. Lock. Development of Range Design Elements and Quality Control/Quality Assurance Guidance to Reduce Maintenance Requirements on Training Ranges. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada460751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blodgett, Douglas, Michael Behnke und William Erdman. Power Converter Control Algorithm Design and Simulation for the NREL Next-Generation Drivetrain: July 8, 2013 - January 7, 2016. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1318194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

R. Fink, D. Hill, J. O'Hara. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/835085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie