Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Guest inclusion complexes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Guest inclusion complexes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Guest inclusion complexes"
Malinska, Maura. „Insights into molecular recognition from the crystal structures of p-tert-butylcalix[6]arene complexed with different solvents“. IUCrJ 9, Nr. 1 (16.11.2021): 55–64. http://dx.doi.org/10.1107/s2052252521010678.
Der volle Inhalt der QuelleGiastas, Petros, Konstantina Yannakopoulou und Irene M. Mavridis. „Molecular structures of the inclusion complexes β-cyclodextrin–1,2-bis(4-aminophenyl)ethane and β-cyclodextrin–4,4′-diaminobiphenyl; packing of dimeric β-cyclodextrin inclusion complexes“. Acta Crystallographica Section B Structural Science 59, Nr. 2 (26.03.2003): 287–99. http://dx.doi.org/10.1107/s010876810300257x.
Der volle Inhalt der QuelleKadu, Rahul, Vineeta Pillai, Amrit V. und Vinay K. Singh. „Synthesis and spectral characterization of bimetallic metallomacrocyclic structures [MII2-μ2-bis-{(κ2S,S-S2CN(R)C6H4)2O}] (M = Ni/Zn/Cd): density functional theory and host–guest reactivity studies“. RSC Advances 5, Nr. 129 (2015): 106688–99. http://dx.doi.org/10.1039/c5ra22175g.
Der volle Inhalt der QuelleToda, Fumio. „Crystalline inclusion complexes as media of molecular recognitions and selective reactions“. Pure and Applied Chemistry 73, Nr. 7 (01.07.2001): 1137–45. http://dx.doi.org/10.1351/pac200173071137.
Der volle Inhalt der QuelleMejuto, Juan C., und Jesus Simal-Gandara. „Host–Guest Complexes“. International Journal of Molecular Sciences 23, Nr. 24 (12.12.2022): 15730. http://dx.doi.org/10.3390/ijms232415730.
Der volle Inhalt der QuelleGómez-González, Borja, Luis García-Río, Nuno Basílio, Juan C. Mejuto und Jesus Simal-Gandara. „Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions“. Pharmaceutics 14, Nr. 1 (28.12.2021): 60. http://dx.doi.org/10.3390/pharmaceutics14010060.
Der volle Inhalt der QuelleSuwinska, Kinga. „Intermolecular interactions in inclusion complexes“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C673. http://dx.doi.org/10.1107/s2053273314093267.
Der volle Inhalt der QuelleHettiarachchi, D. Saroja N., und Donal H. Macartney. „Cucurbit[7]uril host-guest complexes with cationic bis(4,5-dihydro-1H-imidazol-2-yl) guests in aqueous solution“. Canadian Journal of Chemistry 84, Nr. 6 (01.06.2006): 905–14. http://dx.doi.org/10.1139/v06-099.
Der volle Inhalt der QuelleKadokawa, Jun-ichi. „Synthesis of Amylosic Supramolecular Materials by Glucan Phosphorylase-Catalyzed Enzymatic Polymerization According to the Vine-Twining Approach“. Synlett 31, Nr. 07 (30.01.2020): 648–56. http://dx.doi.org/10.1055/s-0039-1690804.
Der volle Inhalt der QuelleDutta, Ashutosh, Niloy Roy, Koyeli Das, Debadrita Roy, Raja Ghosh und Mahendra Nath Roy. „Synthesis and Characterization of Host Guest Inclusion Complexes of Cyclodextrin Molecules with Theophylline by Diverse Methodologies“. Emerging Science Journal 4, Nr. 1 (01.02.2020): 52–72. http://dx.doi.org/10.28991/esj-2020-01210.
Der volle Inhalt der QuelleDissertationen zum Thema "Guest inclusion complexes"
Bezuidenhout, Charl Xavier. „Polar ordering of guest molecules in host-guest inclusion complexes“. Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18107.
Der volle Inhalt der QuelleENGLISH ABSTRACT: 2,7-dimethylocta-3,5-diyne-2,7-diol forms inclusion complexes with various guests molecules, where the guest molecules are polar-ordered. A Cambridge Structural Database (CSD) search revealed ten inclusion complexes where the guest molecules were polar-ordered. Using Density Functional Theory (DFT) computational methods (in the absence of the host), we evaluated the intra-channel and lateral guest-guest interactions between the guest molecules. Two polar-ordered inclusion complexes ((1,4,7-cyclohexane-1,2,4,5,7,8-hexaoxonane)·CHCl3 and (2,4,6-(endolongifolyl)-1,3,5-trioxane)·CDCl3) were singled out in the CSD search for further studies along with 2,7-dimethylocta-3,5-diyne-2,7-diol. Synthesis of any 1,2,4,5,7,8-hexaoxonane and 1,3,5-trioxane derivatives was attempted to establish whether the polar-ordering ability extends into the family of compounds. We managed to produce three new polar-ordered inclusion complexes with 2,7-dimethylocta-3,5-diyne-2,7-diol (ClC(CH3)3, BrC(CH3)3 and IC(CH3)3), thus extending the series to six guest polar-ordered systems. We were only able to synthesise 1,4,7-cyclohexane-1,2,4,5,7,8-hexaoxonane and produce the CHCl3 inclusion complex and one new polar-ordered inclusion complex (CHBr3). Three 1,3,5-trioxanes was synthesised (the cyclohexyl, cyclohex-3-en-1-yl and cyclopentyl derivatives), which did not include any solvents. However, these 1,3,5-trioxanes also form polar-ordered crystals. These compounds and inclusion complexes were analysed by means of single crystal X-ray diffraction to determine their crystal structures. All the crystal structures could be solved and refined to adequate accuracy (except for 2,4,6-tri(cyclopentyl)-1,3,5-trioxane) with no disorder of the guest molecules (where applicable) and their polar-ordering property investigated. Due to their vast molecular differences, these compounds were studied separately by means of visual crystal structure analysis and computational modelling techniques (Density functional theory, molecular mechanics, molecular dynamics and molecular quench dynamics).
AFRIKAANSE OPSOMMING: 2,7-dimetielokta-3,5-diyn-2,7-diol vorm insluitingskomplekse met verskeie molekules as gaste, waar die gas-molekules polêr georden is. 'n Cambridge Struktuur Databasis (CSD) soektog lewer tien insluitings komplekse waarvan die gas-molekules polêr georden is. Deur gebruik te maak van Digtheidsfunksionele teorie (DFT) berekeninge (in die afwesigheid van die gasheer) het ons die inter-kanaal en wedersydse gas-gas interaksies tussen die gas molekules geëvalueer. Twee polêr geordende insluitingskomplekse ((1,4,7-sikloheksaan-1,2,4,5,7,8-heksaoksonaan)·CHCl3 en (2,4,6-(endolongifolyl)-1,3,5-trioksaan)·CDCl3) is uitgesonder uit die CSD soektog vir verdere studies saam met 2,7-dimetielokta-3,5-diyn-2,7-diol. Aanslag was gemaak om enige 1,2,4,5,7,8-heksaoksonaan en 1,3,5-trioksaan derivate te sintetiseer en vas te stel of die polêre ordensvermoë oor die familie van verbindings strek. Ons het daarin geslaag om drie nuwe polêr geordende insluitingskomplekse op te lewer met 2,7-dimetielokta-3,5-diyn-2,7-diol (Cl(CH3)3, BrC(CH3)3 en I(CH3)3), en sodoende die reeks uitgebrei na ses gaste wat polêr geordende insluitingskomplekse vorm. Net 1,4,7-sikloheksaan-1,2,4,5,7,8-heksaoksonaan kon gesintetiseer word en dit lewer twee polêr geordende insluitingskomplekse (CHCl3 en CHBr3 (nuut)). Drie 1,3,5-trioksane is gesintetiseer (die sikloheksiel, sikloheks-3-een-1-iel en siklopentiel derivate) en het nie enige oplosmiddels (gaste) ingesluit nie. Nietemin vorm hiedie 1,3,5-trioksane ook polêr geordende kristalle. Hierdie verbindings en insluitingskomplekse is geanaliseer deur middel van enkelkristal X-straal diffraksie om hul kristalstrukture te bepaal. Alle kristalstrukture was opgelos en verwerk tot voldoende akkuraatheid (behalwe vir 2,4,6-tri(siklopentiel)-1,3,5-trioxane) met geen wanorde in die gas molekuul posisies nie (waar van toepassing) en hul polêre ordensvermoë is ondersoek. As gevolg van groot verskille in hul molekulêre strukture, is hierdie verbindings afsonderlik bestudeer deur middel van molekulêre modellerings metodes (Digtheidsfunksionele teorie, molekulêre meganika, molekulêre dinamika en molekulêre stakings dinamika).
Roy, Aditi. „Study to explore molecular inclusion complexes of cyclic hosts with vital guests in various environments“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2633.
Der volle Inhalt der QuelleO'Brien, Mark. „Spectroscopic Studies of Inclusion Host-Guest Complexes Between Cyclophane Corrals and Polcyclic Aromatic Hydrocarbons“. TopSCHOLAR®, 2005. http://digitalcommons.wku.edu/theses/470.
Der volle Inhalt der QuelleHulushe, Siyabonga Theophillus. „Guest inclusion behaviour of zirconium(IV)- based polycarboxylate complexes: a study of metal-organic frameworks“. Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/63710.
Der volle Inhalt der QuelleKundu, Mitali. „Exploration of inclusion complexes between host and guest molecules and solvation effect of some vital molecules in various environments“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2689.
Der volle Inhalt der QuelleMondal, Jaygopal. „Solvation consequences of different aqueous media on some biologically active compounds: a physico-chemical study“. Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4751.
Der volle Inhalt der QuelleBarman, Siti. „Investigation on solvation behaviour and host guest inclusion complexes of some significant molecules with diverse cyclic compounds“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2588.
Der volle Inhalt der QuelleRoy, Niloy. „Synthesis, characterization and innovative applications of inclusion complexes and nanocomposites of some biologically potent molecules“. Thesis, University of North Bengal, 2022. http://ir.nbu.ac.in/handle/123456789/4754.
Der volle Inhalt der QuelleRahaman, Habibur. „Diverse Interactions of Some Significant Compounds Prevailing in Different Solvent Systems with the Manifestation of Solvation Consequence by Physicochemical Investigations“. Thesis, University of North Bengal, 2019. http://ir.nbu.ac.in/handle/123456789/2814.
Der volle Inhalt der QuelleGroom, Jazerie J. „Evaluation of Apparent Formation Constants of Host-Guest Inclusion Complexes of Solutes with Soluble Calixarenes Using High Performance Liquid Chromatography“. Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389273191.
Der volle Inhalt der QuelleBuchteile zum Thema "Guest inclusion complexes"
Wagner, Brian D. „Host–Guest Inclusion Complexes“. In Supramolecular Chemistry in Corrosion and Biofouling Protection, 17–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003169130-3.
Der volle Inhalt der QuelleCheetham, A. K., und B. K. Peterson. „Computer Simulations of Host-Guest Complexes“. In Inclusion Phenomena and Molecular Recognition, 277–87. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0603-0_29.
Der volle Inhalt der QuelleToda, Fumio. „Reaction control of guest compounds in host-guest inclusion complexes“. In Topics in Current Chemistry, 211–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-19338-3_5.
Der volle Inhalt der QuelleYasuda, Satoshi, Yasuyuki Goto, Koji Miyake, Kenji Hata, Jun Sumaoka, Akira Harada, Makoto Komiyama und Hidemi Shigekawa. „Guest-Dependent Ordering of the Self-Assembled Cyclodextrin Inclusion Complexes Studied by Scanning Tunneling Microscopy“. In Proceedings of the Ninth International Symposium on Cyclodextrins, 649–52. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4681-4_153.
Der volle Inhalt der QuelleWagner, Brian D. „Fluorescence Studies of the Hydrogen Bonding of Excited-State Molecules within Supramolecular Host-Guest Inclusion Complexes“. In Hydrogen Bonding and Transfer in the Excited State, 175–91. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669143.ch8.
Der volle Inhalt der QuelleGonzález-Gaitano, G., T. Sanz, R. Gabarró, J. A. Rodríguez-Cheda, M. C. Sáez und G. Tardajos. „Molar Partial Properties in Host-Guest Systems: Application to the Inclusion Complexes between β- Cyclodextrin and Sodium Alkanoates“. In Proceedings of the Ninth International Symposium on Cyclodextrins, 667–70. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4681-4_158.
Der volle Inhalt der QuelleBallester, Pablo, und Shannon M. Biros. „CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes“. In The Importance of Pi-Interactions in Crystal Engineering, 79–107. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119945888.ch3.
Der volle Inhalt der QuelleVitale, Rosa Maria, und Pietro Amodeo. „Self-Inclusion Complexes of Monofunctionalized Beta-Cyclodextrins as Host–Guest Interaction Model Systems and Simple and Sensitive Testbeds for Implicit Solvation Methods“. In Computational Electrostatics for Biological Applications, 271–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12211-3_14.
Der volle Inhalt der QuelleHarata, Kazuaki. „Recent advances in the X-ray analysis of cyclodextrin complexes“. In Inclusion Compounds, 311–44. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198552932.003.0009.
Der volle Inhalt der QuelleKatz, Howard E. „Recent advances in multidentate anion complexation“. In Inclusion Compounds, 391–405. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198552925.003.0009.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Guest inclusion complexes"
Kaneko, Takuma, Hirokazu Takahashi, Kenryo Ohminami, Takehisa Konishi, Masaki Ueda, Shin-ichi Nagamatsu und Takashi Fujikawa. „Host-Guest Interaction in α-Cyclodextrin Inclusion Complexes“. In X-RAY ABSORPTION FINE STRUCTURE - XAFS13: 13th International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2644519.
Der volle Inhalt der QuelleCaira, Mino. „Supramolecular chemistry of cyclodextrins and their inclusion complexes containing bioactive guest compounds“. In The 1st International Electronic Conference on Pharmaceutics. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecp2020-08915.
Der volle Inhalt der QuelleHu, Shenshui, Cuiling Xu, Lingzi Meng, Yongbin He und Dafu Cui. „Electrochemical oxygen sensor based on host-guest inclusion complex of calixarene and methyl viologen“. In International Conference on Sensors and Control Techniques (ICSC2000), herausgegeben von Desheng Jiang und Anbo Wang. SPIE, 2000. http://dx.doi.org/10.1117/12.385597.
Der volle Inhalt der QuelleVázquez Tato, José, Víctor Soto Tellini, Aida Ramos, Juan Trillo Novo, Francisco Meijide und Jorge Carrazana G. „Can Guest Hydrophobicity Guide the Entrance into the Host in the Formation of an Inclusion Complex?“ In The 8th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2004. http://dx.doi.org/10.3390/ecsoc-8-01996.
Der volle Inhalt der Quelle