Zeitschriftenartikel zum Thema „Groundwater flow Computer simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Groundwater flow Computer simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
VAN HERWAARDEN, ONNO A., und JOHAN GRASMAN. „DISPERSIVE GROUNDWATER FLOW AND POLLUTION“. Mathematical Models and Methods in Applied Sciences 01, Nr. 01 (März 1991): 61–81. http://dx.doi.org/10.1142/s0218202591000058.
Der volle Inhalt der QuelleWang, Yan, Wen Xia Wei, Hui Ling Han und Ying Wang. „Groundwater Migration Modeling and Parameter Sensitivity Analysis on Contaminated Site“. Advanced Materials Research 878 (Januar 2014): 775–81. http://dx.doi.org/10.4028/www.scientific.net/amr.878.775.
Der volle Inhalt der QuelleJi, Xiaohui, Tangpei Cheng und Qun Wang. „CUDA-based solver for large-scale groundwater flow simulation“. Engineering with Computers 28, Nr. 1 (19.02.2011): 13–19. http://dx.doi.org/10.1007/s00366-011-0213-2.
Der volle Inhalt der QuelleKupfersberger, Hans, Gerhard Rock und Johannes C. Draxler. „Combining Groundwater Flow Modeling and Local Estimates of Extreme Groundwater Levels to Predict the Groundwater Surface with a Return Period of 100 Years“. Geosciences 10, Nr. 9 (18.09.2020): 373. http://dx.doi.org/10.3390/geosciences10090373.
Der volle Inhalt der QuelleLei, Xinbo, Xiuhua Zheng, Chenyang Duan, Jianhong Ye und Kang Liu. „Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater“. Energies 12, Nr. 19 (27.09.2019): 3698. http://dx.doi.org/10.3390/en12193698.
Der volle Inhalt der QuelleZhao, Ying Wang, Xue Yuan Li, Shi Lei Chen und Kai Bian. „Groundwater Flow Field Analysis and 3D Visualization System“. Advanced Materials Research 1073-1076 (Dezember 2014): 1664–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1073-1076.1664.
Der volle Inhalt der QuelleRyu, Han-Sun, Jinah Moon, Heejung Kim und Jin-Yong Lee. „Modeling and Parametric Simulation of Microplastic Transport in Groundwater Environments“. Applied Sciences 11, Nr. 16 (04.08.2021): 7189. http://dx.doi.org/10.3390/app11167189.
Der volle Inhalt der QuelleFischer, T., D. Naumov, S. Sattler, O. Kolditz und M. Walther. „GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models“. Geoscientific Model Development 8, Nr. 11 (12.11.2015): 3681–94. http://dx.doi.org/10.5194/gmd-8-3681-2015.
Der volle Inhalt der QuelleWu, Yue, Yan-Zhi Li, Wei-Guo Qiao, Zhen-Wang Fan, Shuai Zhang, Kui Chen und Lei Zhang. „Water Seepage in Rocks at Micro-Scale“. Water 14, Nr. 18 (11.09.2022): 2827. http://dx.doi.org/10.3390/w14182827.
Der volle Inhalt der QuelleXueya, Lin, und Yang Yuesuo. „The Optimization of Ground Water Supply System in Shi Jiazhuang City, China“. Water Science and Technology 24, Nr. 11 (01.12.1991): 71–76. http://dx.doi.org/10.2166/wst.1991.0338.
Der volle Inhalt der QuellePongritsakda, Thatthep, Kengo Nakamura, Jiajie Wang, Noriaki Watanabe und Takeshi Komai. „Prediction and Remediation of Groundwater Pollution in a Dynamic and Complex Hydrologic Environment of an Illegal Waste Dumping Site“. Applied Sciences 11, Nr. 19 (04.10.2021): 9229. http://dx.doi.org/10.3390/app11199229.
Der volle Inhalt der QuelleBooij, M., A. Leijnse, S. Haldorsen, M. Heim und H. Rueslåtten. „Subpermafrost Groundwater Modelling in Ny-Ålesund, Svalbard“. Hydrology Research 29, Nr. 4-5 (01.08.1998): 385–96. http://dx.doi.org/10.2166/nh.1998.0030.
Der volle Inhalt der QuelleTriatmojo, Pramudita, und Mas Agus Mardyanto. „Forward Problems Solving of Groundwater Flow using Stochastic Groundwater Vistas Method“. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands 10, Nr. 2 (01.10.2021): 160–69. http://dx.doi.org/10.36706/jlso.10.2.2021.525.
Der volle Inhalt der QuelleAkram, Sedki. „Improved Flower Pollination Algorithm for Optimal Groundwater Management“. International Journal of Computational Intelligence and Applications 19, Nr. 03 (05.08.2020): 2050022. http://dx.doi.org/10.1142/s1469026820500224.
Der volle Inhalt der QuelleHughes, J. D., C. D. Langevin und J. T. White. „MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation“. Groundwater 53, Nr. 3 (05.06.2014): 452–63. http://dx.doi.org/10.1111/gwat.12216.
Der volle Inhalt der QuelleBedekar, Vivek, Richard G. Niswonger, Kenneth Kipp, Sorab Panday und Matthew Tonkin. „Approaches to the Simulation of Unconfined Flow and Perched Groundwater Flow in MODFLOW“. Ground Water 50, Nr. 2 (02.06.2011): 187–98. http://dx.doi.org/10.1111/j.1745-6584.2011.00829.x.
Der volle Inhalt der QuelleOwen, S. J., N. L. Jones und J. P. Holland. „A comprehensive modeling environment for the simulation of groundwater flow and transport“. Engineering with Computers 12, Nr. 3-4 (September 1996): 235–42. http://dx.doi.org/10.1007/bf01198737.
Der volle Inhalt der QuelleCai, Jinbang, Yue Su, Huan Shen und Yong Huang. „Simulation of Groundwater Flow in Fractured-Karst Aquifer with a Coupled Model in Maling Reservoir, China“. Applied Sciences 11, Nr. 4 (21.02.2021): 1888. http://dx.doi.org/10.3390/app11041888.
Der volle Inhalt der QuelleTolera, Mesfin Benti, und Il-Moon Chung. „Integrated Hydrological Analysis of Little Akaki Watershed Using SWAT-MODFLOW, Ethiopia“. Applied Sciences 11, Nr. 13 (28.06.2021): 6011. http://dx.doi.org/10.3390/app11136011.
Der volle Inhalt der QuelleSerageldin, Ahmed A., Ali Radwan, Yoshitaka Sakata, Takao Katsura und Katsunori Nagano. „The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation“. Energies 13, Nr. 6 (18.03.2020): 1418. http://dx.doi.org/10.3390/en13061418.
Der volle Inhalt der QuelleKaneko, Shohei, Akira Tomigashi, Takeshi Ishihara, Gaurav Shrestha, Mayumi Yoshioka und Youhei Uchida. „Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology“. Energies 13, Nr. 8 (11.04.2020): 1872. http://dx.doi.org/10.3390/en13081872.
Der volle Inhalt der QuelleAn, Nguyen Ngoc, Huynh Song Nhut, Tran Anh Phuong, Vu Quang Huy, Nguyen Cao Hanh, Giang Thi Phuong Thao, Pham The Trinh, Pham Viet Hoa und Nguyễn An Bình. „Groundwater simulation in Dak Lak province based on MODFLOW model and climate change scenarios“. Frontiers in Engineering and Built Environment 2, Nr. 1 (25.01.2022): 55–67. http://dx.doi.org/10.1108/febe-11-2021-0055.
Der volle Inhalt der QuelleCheng, Tangpei, Zeyao Mo und Jingli Shao. „Accelerating Groundwater Flow Simulation in MODFLOW Using JASMIN-Based Parallel Computing“. Groundwater 52, Nr. 2 (18.04.2013): 194–205. http://dx.doi.org/10.1111/gwat.12047.
Der volle Inhalt der QuelleKobayashi, Kenichiro, Reinhard Hinkelmann und Rainer Helmig. „Development of a simulation–optimization model for multiphase systems in the subsurface: a challenge to real-world simulation–optimization“. Journal of Hydroinformatics 10, Nr. 2 (01.03.2008): 139–52. http://dx.doi.org/10.2166/hydro.2008.013.
Der volle Inhalt der QuelleGłogowski, Arkadiusz, und Mieczysław Chalfen. „Analysis of the effectiveness of the systems protecting against the impact of water damming in the river on the increase of groundwater level on the example of the Malczyce dam“. ITM Web of Conferences 23 (2018): 00011. http://dx.doi.org/10.1051/itmconf/20182300011.
Der volle Inhalt der QuelleRudolph, D. L., und E. A. Sudicky. „Simulation of groundwater flow in complex multiaquifer systems: Performance of a quasi three-dimensional technique in the steady-state case“. Canadian Geotechnical Journal 27, Nr. 5 (01.10.1990): 590–600. http://dx.doi.org/10.1139/t90-074.
Der volle Inhalt der QuelleHanasaki, Naota, Sayaka Yoshikawa, Yadu Pokhrel und Shinjiro Kanae. „A global hydrological simulation to specify the sources of water used by humans“. Hydrology and Earth System Sciences 22, Nr. 1 (29.01.2018): 789–817. http://dx.doi.org/10.5194/hess-22-789-2018.
Der volle Inhalt der QuelleBudinski, Ljubomir, Julius Fabian und Matija Stipic. „Modeling groundwater flow by lattice Boltzmann method in curvilinear coordinates“. International Journal of Modern Physics C 26, Nr. 02 (Februar 2015): 1550013. http://dx.doi.org/10.1142/s0129183115500138.
Der volle Inhalt der QuelleBultreys, T., S. Van Offenwert, W. Goethals, M. N. Boone, J. Aelterman und V. Cnudde. „X-ray tomographic micro-particle velocimetry in porous media“. Physics of Fluids 34, Nr. 4 (April 2022): 042008. http://dx.doi.org/10.1063/5.0088000.
Der volle Inhalt der QuelleSzymkiewicz, Adam, Anna Gumuła-Kawęcka, Dawid Potrykus, Beata Jaworska-Szulc, Małgorzata Pruszkowska-Caceres und Wioletta Gorczewska-Langner. „Estimation of Conservative Contaminant Travel Time through Vadose Zone Based on Transient and Steady Flow Approaches“. Water 10, Nr. 10 (10.10.2018): 1417. http://dx.doi.org/10.3390/w10101417.
Der volle Inhalt der QuelleMaier, Robert S., D. M. Kroll, H. Ted Davis und Robert S. Bernard. „Pore-Scale Flow and Dispersion“. International Journal of Modern Physics C 09, Nr. 08 (Dezember 1998): 1523–33. http://dx.doi.org/10.1142/s0129183198001370.
Der volle Inhalt der QuelleYang, Zhiquan, Dan Zhang, Chaoyue Li, Zhiwei Zhang, Yingyan Zhu, Yi Yang, Na He et al. „Column Penetration and Diffusion Mechanism of Bingham Fluid Considering Displacement Effect“. Applied Sciences 12, Nr. 11 (25.05.2022): 5362. http://dx.doi.org/10.3390/app12115362.
Der volle Inhalt der QuelleAshby, S. F., W. J. Bosl, R. D. Falgout, S. G. Smith, A. F. B. Tompson und T. J. Williams. „A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers“. International Journal of High Performance Computing Applications 13, Nr. 1 (März 1999): 80–93. http://dx.doi.org/10.1177/109434209901300105.
Der volle Inhalt der QuellePhoban, Harutus, Uma Seeboonruang und Prateep Lueprasert. „Numerical Modeling of Single Pile Behaviors Due to Groundwater Level Rising“. Applied Sciences 11, Nr. 13 (22.06.2021): 5782. http://dx.doi.org/10.3390/app11135782.
Der volle Inhalt der QuelleLiu, Sida, Yangxiao Zhou, Mingzhao Xie, Michael E. McCalin und Xu-Sheng Wang. „Comparative Assessment of Methods for Coupling Regional and Local Groundwater Flow Models: A Case Study in the Beijing Plain, China“. Water 13, Nr. 16 (16.08.2021): 2229. http://dx.doi.org/10.3390/w13162229.
Der volle Inhalt der QuelleWang, Xiaopu, Lianjie Hou, Tianhao He, Zhenhan Diao, Chuanjin Yao, Tao Long und Ling Fan. „Numerical Simulation of the Enrichment of Chemotactic Bacteria in Oil-Water Two-Phase Transfer Fields of Heterogeneous Porous Media“. Applied Sciences 12, Nr. 10 (21.05.2022): 5215. http://dx.doi.org/10.3390/app12105215.
Der volle Inhalt der QuelleRefsgaard, Anders, Steen Christensen und Jan Reffstrup. „Finite Element Analysis of Controlled Saltwater Intrusion in Heterogeneous Reservoirs“. Hydrology Research 20, Nr. 1 (01.02.1989): 25–42. http://dx.doi.org/10.2166/nh.1989.0003.
Der volle Inhalt der QuelleRabemaharitra, Tahirinandraina Prudence, Yanhong Zou, Zhuowei Yi, Yong He und Umair Khan. „Optimized Pilot Point Emplacement Based Groundwater Flow Calibration Method for Heterogeneous Small-Scale Area“. Applied Sciences 12, Nr. 9 (06.05.2022): 4648. http://dx.doi.org/10.3390/app12094648.
Der volle Inhalt der QuellePasetto, Damiano, Alberto Guadagnini und Mario Putti. „A reduced-order model for Monte Carlo simulations of stochastic groundwater flow“. Computational Geosciences 18, Nr. 2 (19.12.2013): 157–69. http://dx.doi.org/10.1007/s10596-013-9389-4.
Der volle Inhalt der QuelleTimaniya, Aman, und Nayankumar Soni. „“Modeling of Saline Water Intrusion using MODFLOW in Una Coastal Aquifer of Gujarat, India.”“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 5 (31.05.2022): 634–40. http://dx.doi.org/10.22214/ijraset.2022.42309.
Der volle Inhalt der QuelleAl-Barwani, H. H., M. Al-Lawatia, E. Balakrishnan und A. Purnama. „Modeling Flow and Transport in Unsaturated Porous Media: A Review“. Sultan Qaboos University Journal for Science [SQUJS] 5 (01.12.2000): 265. http://dx.doi.org/10.24200/squjs.vol5iss0pp265-280.
Der volle Inhalt der QuelleWu, Yue, Wei-Guo Qiao, Yan-Zhi Li, Zhen-Wang Fan, Shuai Zhang, Lei Zhang und Xiao-Li Zhang. „Seepage of Groundwater in an Underground Fractured Rock Mass and Its Sustainable Engineering Application“. Applied Sciences 12, Nr. 16 (17.08.2022): 8221. http://dx.doi.org/10.3390/app12168221.
Der volle Inhalt der QuelleŠoltész, Andrej, Dana Baroková, Zinaw Dingetu Shenga und Michaela Červeňanská. „Hydraulic Assessment of the Impacts of Gate Realization on Groundwater Regime“. Pollack Periodica 15, Nr. 3 (07.11.2020): 162–71. http://dx.doi.org/10.1556/606.2020.15.3.16.
Der volle Inhalt der QuelleNyende, Jacob, Isaac Enyogoi, John Mango und Henry Kasumba. „Numerical Simulation of a Two-Dimensional Groundwater Pollute Transport Problem Using Incompressible Steady-State Navier-Stokes Equations and Diffusion-Convection Equations“. Modelling and Simulation in Engineering 2022 (12.04.2022): 1–20. http://dx.doi.org/10.1155/2022/7419502.
Der volle Inhalt der QuelleTracy, Fred Thomas, Thomas C. Oppe und Maureen K. Corcoran. „A comparison of MPI and co-array FORTRAN for large finite element variably saturated flow simulations“. Scalable Computing: Practice and Experience 19, Nr. 4 (29.12.2018): 423–32. http://dx.doi.org/10.12694/scpe.v19i4.1468.
Der volle Inhalt der QuelleLyons, Richard T., Richard C. Peralta und Partha Majumder. „Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima“. International Journal of Environmental Research and Public Health 17, Nr. 3 (30.01.2020): 853. http://dx.doi.org/10.3390/ijerph17030853.
Der volle Inhalt der QuelleAbd-Elaty, Ismail, Martina Zeleňáková, Katarína Krajníková und Hany Abd-Elhamid. „Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions“. Water 13, Nr. 7 (04.04.2021): 995. http://dx.doi.org/10.3390/w13070995.
Der volle Inhalt der QuelleChen, Wenfang, Yaobin Zhang, Weiwei Shi, Yali Cui, Qiulan Zhang, Yakun Shi und Zexin Liang. „Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province“. Applied Sciences 11, Nr. 24 (09.12.2021): 11683. http://dx.doi.org/10.3390/app112411683.
Der volle Inhalt der QuelleWang, Weishu, Chuang Li, Yun-Ze Li, Man Yuan und Tong Li. „Numerical Analysis of Heat Transfer Performance of In Situ Thermal Remediation of Large Polluted Soil Areas“. Energies 12, Nr. 24 (05.12.2019): 4622. http://dx.doi.org/10.3390/en12244622.
Der volle Inhalt der QuelleAndrássy, Tomáš, und Dana Baroková. „Numerical modeling of groundwater flow close to drinking water resources during flood events“. Pollack Periodica 11, Nr. 1 (April 2016): 43–54. http://dx.doi.org/10.1556/606.2016.11.1.5.
Der volle Inhalt der Quelle