Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Groundwater flow Computer simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Groundwater flow Computer simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Groundwater flow Computer simulation"
VAN HERWAARDEN, ONNO A., und JOHAN GRASMAN. „DISPERSIVE GROUNDWATER FLOW AND POLLUTION“. Mathematical Models and Methods in Applied Sciences 01, Nr. 01 (März 1991): 61–81. http://dx.doi.org/10.1142/s0218202591000058.
Der volle Inhalt der QuelleWang, Yan, Wen Xia Wei, Hui Ling Han und Ying Wang. „Groundwater Migration Modeling and Parameter Sensitivity Analysis on Contaminated Site“. Advanced Materials Research 878 (Januar 2014): 775–81. http://dx.doi.org/10.4028/www.scientific.net/amr.878.775.
Der volle Inhalt der QuelleJi, Xiaohui, Tangpei Cheng und Qun Wang. „CUDA-based solver for large-scale groundwater flow simulation“. Engineering with Computers 28, Nr. 1 (19.02.2011): 13–19. http://dx.doi.org/10.1007/s00366-011-0213-2.
Der volle Inhalt der QuelleKupfersberger, Hans, Gerhard Rock und Johannes C. Draxler. „Combining Groundwater Flow Modeling and Local Estimates of Extreme Groundwater Levels to Predict the Groundwater Surface with a Return Period of 100 Years“. Geosciences 10, Nr. 9 (18.09.2020): 373. http://dx.doi.org/10.3390/geosciences10090373.
Der volle Inhalt der QuelleLei, Xinbo, Xiuhua Zheng, Chenyang Duan, Jianhong Ye und Kang Liu. „Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater“. Energies 12, Nr. 19 (27.09.2019): 3698. http://dx.doi.org/10.3390/en12193698.
Der volle Inhalt der QuelleZhao, Ying Wang, Xue Yuan Li, Shi Lei Chen und Kai Bian. „Groundwater Flow Field Analysis and 3D Visualization System“. Advanced Materials Research 1073-1076 (Dezember 2014): 1664–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1073-1076.1664.
Der volle Inhalt der QuelleRyu, Han-Sun, Jinah Moon, Heejung Kim und Jin-Yong Lee. „Modeling and Parametric Simulation of Microplastic Transport in Groundwater Environments“. Applied Sciences 11, Nr. 16 (04.08.2021): 7189. http://dx.doi.org/10.3390/app11167189.
Der volle Inhalt der QuelleFischer, T., D. Naumov, S. Sattler, O. Kolditz und M. Walther. „GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models“. Geoscientific Model Development 8, Nr. 11 (12.11.2015): 3681–94. http://dx.doi.org/10.5194/gmd-8-3681-2015.
Der volle Inhalt der QuelleWu, Yue, Yan-Zhi Li, Wei-Guo Qiao, Zhen-Wang Fan, Shuai Zhang, Kui Chen und Lei Zhang. „Water Seepage in Rocks at Micro-Scale“. Water 14, Nr. 18 (11.09.2022): 2827. http://dx.doi.org/10.3390/w14182827.
Der volle Inhalt der QuelleXueya, Lin, und Yang Yuesuo. „The Optimization of Ground Water Supply System in Shi Jiazhuang City, China“. Water Science and Technology 24, Nr. 11 (01.12.1991): 71–76. http://dx.doi.org/10.2166/wst.1991.0338.
Der volle Inhalt der QuelleDissertationen zum Thema "Groundwater flow Computer simulation"
Wiyo, Kenneth Alfred Wiskot. „Measurements and modelling of fertilizer concentrations in subsurface drain flow from a potato field“. Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60542.
Der volle Inhalt der QuelleObserved N concentrations in tile drain flow exceeded the Canadian water quality guideline of 10 mg/L. Observed P concentrations were less than 0.01 mg/L; and K concentrations, for the most part, exceeded 10 mg/L.
CREAMS overpredicted event surface runoff depths, and underpredicted event percolation depths. However, total monthly surface runoff and percolation depths closely matched observed values.
CREAMS overpredicted event nitrate concentrations in tile drain flow. There was a poor match between predicted and observed event nitrate concentrations in tile drain flow (coefficient of predictability, CP$ sb{ rm A}$ = 104.95). However, predicted total monthly nitrate load closely matched observed values (CP$ sb{ rm A}$ = 0.84). Total monthly and seasonal nitrate loads in tile drain flow were underpredicted.
Woods, Juliette Aimi. „Numerical accuracy of variable-density groundwater flow and solute transport simulations“. Title page, contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phw8941.pdf.
Der volle Inhalt der QuelleColautti, Dennis. „Modelling meteorological and substrate influences on peatland hydraulic gradient reversals“. Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33734.
Der volle Inhalt der QuelleSinghal, Alka. „Spatial variability in ground-water movement in Delaware County, Indiana : a GIS based model“. Virtual Press, 2004. http://liblink.bsu.edu/uhtbin/catkey/1306859.
Der volle Inhalt der QuelleDepartment of Geology
Lee, Chun-kwong, und 李振光. „Computer modelling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropicalregions“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41290768.
Der volle Inhalt der QuelleLee, Chun-kwong. „Computer modelling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropical regions“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41290768.
Der volle Inhalt der QuelleWang, Li. „Simulation of soil water movement model (SWaMM) using the Spider Distributed System“. CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2419.
Der volle Inhalt der QuelleSilliman, Stephen Edward Joseph 1957. „Stochastic analysis of high-permeability paths in the subsurface“. Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/191120.
Der volle Inhalt der QuelleBaron, Dirk. „Analysis and Numerical Simulation of the Ground Water System at the Bonneville Navigation Lock Site, Oregon“. PDXScholar, 1990. https://pdxscholar.library.pdx.edu/open_access_etds/4027.
Der volle Inhalt der QuellePischel, Esther Maria. „Investigating the Link Between Surface Water and Groundwater in the Tule Lake Subbasin, Oregon and California“. PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1941.
Der volle Inhalt der QuelleBücher zum Thema "Groundwater flow Computer simulation"
Groundwater discharge tests: Simulation and analysis. Amsterdam: Elsevier, 1988.
Den vollen Inhalt der Quelle findenAhlfeld, David P. Optimal management of flow in groundwater systems. San Diego, Calif: Academic, 2000.
Den vollen Inhalt der Quelle findenLeake, S. A. Procedures and computer programs for telescopic mesh refinement using MODFLOW. Tucson, Ariz: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Den vollen Inhalt der Quelle findenReilly, Thomas E. Guidelines for evaluating ground-water flow models. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Den vollen Inhalt der Quelle findenReilly, Thomas E. Guidelines for evaluating ground-water flow models. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Den vollen Inhalt der Quelle findenReilly, Thomas E. Guidelines for evaluating ground-water flow models. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Den vollen Inhalt der Quelle findenReilly, Thomas E. Guidelines for evaluating ground-water flow models. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Den vollen Inhalt der Quelle findenGroundwater modeling utilities. Boca Raton: Lewis Publishers, 1992.
Den vollen Inhalt der Quelle findenHeijde, Paul Van der. Ground-water model testing: Systematic evaluation and testing of code functionality and performance. Cincinnati, Ohio: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1997.
Den vollen Inhalt der Quelle findenHeijde, Paul Van der. Ground-water model testing: Systematic evaluation and testing of code functionality and performance. Cincinnati, Ohio: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Groundwater flow Computer simulation"
Burger, J., H. J. Brinkhof und D. v.d. Valk. „Strop: A Computer Program Simulating Flow Patterns and Pollution Migration in Saturated Groundwater“. In Groundwater Contamination: Use of Models in Decision-Making, 253–61. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2301-0_24.
Der volle Inhalt der QuelleLerche, I., und E. Paleologos. „Groundwater Flow: Models, Data, and Uncertainties“. In Geologic Modeling and Simulation, 247–69. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1359-9_13.
Der volle Inhalt der QuelleRai, Shivendra Nath. „Modeling Groundwater Flow in Unconfined Aquifers“. In Simulation Foundations, Methods and Applications, 187–210. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05657-9_9.
Der volle Inhalt der QuelleKinzelbach, Wolfgang. „The Random Walk Method in Pollutant Transport Simulation“. In Groundwater Flow and Quality Modelling, 227–45. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2889-3_15.
Der volle Inhalt der QuelleSingh, Mritunjay Kumar, und Priyanka Kumari. „Contaminant Concentration Prediction Along Unsteady Groundwater Flow“. In Simulation Foundations, Methods and Applications, 257–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05657-9_12.
Der volle Inhalt der QuelleYamashita, Naoki, und Satoru Sugio. „Numerical Simulation of Nitrate Transport with Unsaturated Flow Condition in Volcanic Soils“. In Groundwater Updates, 147–52. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-68442-8_25.
Der volle Inhalt der QuelleHinkelmann, Reinhard, Hussam Sheta, Rainer Helmig, Eberhard J. Sauter und Michael Schlüter. „Numerical Simulation of Water-Gas Flow and Transport Processes in Coastal Aquifers“. In Groundwater Updates, 295–300. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-68442-8_49.
Der volle Inhalt der QuelleAtaie-Ashtiani, B., S. M. Hassanizadeh, M. Oostrom und M. D. White. „Numerical Simulation and Homogenization of Two-Phase Flow in Heterogeneous Porous Media“. In Groundwater Updates, 333–38. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-68442-8_55.
Der volle Inhalt der QuelleJia, Yangwen, Guangheng Ni, Yoshihisa Kawahara und Tadashi Suetsugi. „Numerical Simulation of Groundwater Flow in Multi-layered Aquifers with a Distributed Hydrological Model“. In Groundwater Updates, 259–64. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-68442-8_43.
Der volle Inhalt der QuelleZijl, W. „Numerical Simulation of Advection in Groundwater Flow Systems“. In Contaminated Soil, 165–67. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5181-5_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Groundwater flow Computer simulation"
Hurtis, Radoslav, Peter Guba und Juraj Kyselica. „Simulation of reactive groundwater flow and salinization in carbonate-rock aquifers“. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2022. http://dx.doi.org/10.1109/icecet55527.2022.9872944.
Der volle Inhalt der QuelleKato, Kazuyuki, Tadashi Maeda und Hiroyasu Takase. „Evaluation of Uncertainty Associated With Spatially Variable Properties“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4561.
Der volle Inhalt der QuelleSun, Hongda, Xiaohui Ji und Xu-Sheng Wang. „Parallelization of groundwater flow simulation on multiple GPUs“. In HP3C '19: 2019 the 3rd International Conference on High Performance Compilation, Computing and Communications. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3318265.3318271.
Der volle Inhalt der QuelleChangjun Zhu und Zhenchun Hao. „Non-darcy seepage modeling of groundwater flow and its simulation“. In 2009 International Conference on Industrial Mechatronics and Automation (ICIMA 2009). IEEE, 2009. http://dx.doi.org/10.1109/icima.2009.5156657.
Der volle Inhalt der QuelleJi, Xiaohui, Tangpei Cheng und Qun Wang. „A simulation of large-scale groundwater flow on CUDA-enabled GPUs“. In the 2010 ACM Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1774088.1774588.
Der volle Inhalt der QuelleDong, Donglin, Wenjie Sun und Zengjiang Qian. „Simulation of Groundwater Contamination in Ningzhuang Coalmine, China“. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering. IEEE, 2010. http://dx.doi.org/10.1109/cesce.2010.39.
Der volle Inhalt der Quelle„Simulation of regional CSG groundwater impacts – errors upscaling & multi-phase flow“. In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.j9.herckenrath.
Der volle Inhalt der Quelle„Role of Wiener chaos expansion in modelling randomness for groundwater contamination flow“. In 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.k14.tiwari.
Der volle Inhalt der QuelleDu, Chao, Changlai Xiao, Xiujuan Liang, Ji Luo, Tonglin Xu und Guangjun Guo. „Numerical Simulation of Groundwater Flow for Sustainable Utilization in Jixi City, China“. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5515502.
Der volle Inhalt der QuelleLuo, Yaqi, Yu-Feng Forrest Lin, Yu-Feng Forrest Lin, Praveen Kumar, Praveen Kumar, Andrew J. Stumpf und Andrew J. Stumpf. „SUBSURFACE HEAT TRANSPORT SIMULATION WITH PERIODIC SURFACE TEMPERATURE SIGNALS AND GROUNDWATER FLOW“. In 50th Annual GSA North-Central Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016nc-275481.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Groundwater flow Computer simulation"
Flach, G., L. Bagwell und P. Bennett. Groundwater flow simulation of the Savannah River Site general separations area. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1392905.
Der volle Inhalt der QuelleMalkovsky, V. I., und A. A. Pek. Computer simulation of radionuclide transport through thermal convection of groundwater from borehole repositories. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10114732.
Der volle Inhalt der QuelleLee, R. R., R. H. Ketelle, J. M. Bownds und T. A. Rizk. Calibration of a groundwater flow and contaminant transport computer model: Progress toward model validation. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5568205.
Der volle Inhalt der QuelleDobranich, D. SAFSIM theory manual: A computer program for the engineering simulation of flow systems. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10115531.
Der volle Inhalt der QuelleELIASSI, MEHDI, und SEAN A. MCKENNA. Long-Term Pumping Test at MIU Site, Toki, Japan: Hydrogeological Modeling and Groundwater Flow Simulation. Office of Scientific and Technical Information (OSTI), März 2003. http://dx.doi.org/10.2172/809104.
Der volle Inhalt der QuelleCarle, S., und Y. Hao. Verification and Validation of a Modified Numerical Algorithm for Simulation of Transient Unconfined Groundwater Flow. Office of Scientific and Technical Information (OSTI), Februar 2022. http://dx.doi.org/10.2172/1843118.
Der volle Inhalt der QuellePohlmann Karl, Ye Ming. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model. Office of Scientific and Technical Information (OSTI), März 2012. http://dx.doi.org/10.2172/1046487.
Der volle Inhalt der QuelleRockhold, M. L., und S. K. Wurstner. Simulation of unsaturated flow and solute transport at the Las Cruces trench site using the PORFLO-3 computer code. Office of Scientific and Technical Information (OSTI), März 1991. http://dx.doi.org/10.2172/6036996.
Der volle Inhalt der QuelleTalbott, M. E., und L. W. Gelhar. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Groundwater flow and transport simulation. Volume 3. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/145213.
Der volle Inhalt der QuelleRusso, David, und William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, Oktober 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Der volle Inhalt der Quelle