Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ground segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ground segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ground segmentation"
Aguiar, P. M. Q., und J. M. F. Moura. „Figure-ground segmentation from occlusion“. IEEE Transactions on Image Processing 14, Nr. 8 (August 2005): 1109–24. http://dx.doi.org/10.1109/tip.2005.851712.
Der volle Inhalt der QuelleKleinschmidt, A., C. Büchel, C. Hutton und R. S. J. Frackowiak. „Hysteresis Effects in Figure-Ground Segmentation“. NeuroImage 7, Nr. 4 (Mai 1998): S356. http://dx.doi.org/10.1016/s1053-8119(18)31189-3.
Der volle Inhalt der QuelleHerzog, Michael H., Sabine Kopmann und Andreas Brand. „Intact figure-ground segmentation in schizophrenia“. Psychiatry Research 129, Nr. 1 (November 2004): 55–63. http://dx.doi.org/10.1016/j.psychres.2004.06.008.
Der volle Inhalt der QuelleMilella, Annalisa, Giulio Reina, James Underwood und Bertrand Douillard. „Visual ground segmentation by radar supervision“. Robotics and Autonomous Systems 62, Nr. 5 (Mai 2014): 696–706. http://dx.doi.org/10.1016/j.robot.2012.10.001.
Der volle Inhalt der QuelleShen, Huiying, James Coughlan und Volodymyr Ivanchenko. „Figure-ground segmentation using factor graphs“. Image and Vision Computing 27, Nr. 7 (Juni 2009): 854–63. http://dx.doi.org/10.1016/j.imavis.2009.02.006.
Der volle Inhalt der Quellevan der Putten, Joost, Fons van der Sommen, Jeroen de Groof, Maarten Struyvenberg, Svitlana Zinger, Wouter Curvers, Erik Schoon, Jacques Bergman und Peter H. N. de With. „Modeling clinical assessor intervariability using deep hypersphere encoder–decoder networks“. Neural Computing and Applications 32, Nr. 14 (21.11.2019): 10705–17. http://dx.doi.org/10.1007/s00521-019-04607-w.
Der volle Inhalt der QuelleYing Yang, Michael, und Bodo Rosenhahn. „SUPERPIXEL CUT FOR FIGURE-GROUND IMAGE SEGMENTATION“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3 (06.06.2016): 387–94. http://dx.doi.org/10.5194/isprsannals-iii-3-387-2016.
Der volle Inhalt der QuelleYing Yang, Michael, und Bodo Rosenhahn. „SUPERPIXEL CUT FOR FIGURE-GROUND IMAGE SEGMENTATION“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3 (06.06.2016): 387–94. http://dx.doi.org/10.5194/isprs-annals-iii-3-387-2016.
Der volle Inhalt der QuelleWarfield, Simon K., Kelly H. Zou und William M. Wells. „Validation of image segmentation by estimating rater bias and variance“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1874 (11.04.2008): 2361–75. http://dx.doi.org/10.1098/rsta.2008.0040.
Der volle Inhalt der QuelleKimchi, Ruth, und Mary A. Peterson. „Figure-Ground Segmentation Can Occur Without Attention“. Psychological Science 19, Nr. 7 (Juli 2008): 660–68. http://dx.doi.org/10.1111/j.1467-9280.2008.02140.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Ground segmentation"
Vyas, Aseem. „Medical Image Segmentation by Transferring Ground Truth Segmentation“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32431.
Der volle Inhalt der QuelleNordlund, Peter. „Figure-ground segmentation using multiple cues“. Doctoral thesis, Stockholm : Tekniska högsk, 1998. http://www.lib.kth.se/abs98/nord0615.pdf.
Der volle Inhalt der QuelleTodorovic, Sinisa. „Statistical modeling and segmentation of sky/ground images“. [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000616.
Der volle Inhalt der QuelleRodolpho, Beatriz Leão. „Ground truth determination for segmentation of tomographic volumes using interpolation“. Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10832.
Der volle Inhalt der QuelleOptical projection tomographic microscopy allows for a 3D analysis of individual cells, making it possible to study its morphology. The 3D imagining technique used in this thesis uses white light excitation to image stained cells, and is referred to as single-cell optical computed tomography (cell CT). Studies have shown that morphological characteristics of the cell and its nucleus are deterministic in cancer diagnoses. For a more complete and accurate analysis of these characteristics, a fully-automated analysis of the single-cell 3D tomographic images can be done. The first step is segmenting the image into the different cell components. To assess how accurate the segmentation is, there is a need to determine ground truth of the automated segmentation. This dissertation intends to expose a method of obtaining ground truth for 3D segmentation of single cells. This was achieved by developing a software in CSharp. The software allows the user to input a visual segmentation of each 2D slice of a 3D volume by using a pen to trace the visually identified boundary of a cell component on a tablet. With this information, the software creates a segmentation of a 3D tomographic image that is a result of human visual segmentation. To increase the speed of this process, interpolation algorithms can be used. Since it is very time consuming to draw on every slice the user can skip slices. Interpolation algorithms are used to interpolate on the skipped slices. Five different interpolation algorithms were written: Linear Interpolation, Gaussian splat, Marching Cubes, Unorganized Points, and Delaunay Triangulation. To evaluate the performance of each interpolation algorithm the following evaluation metrics were used: Jaccard Similarity, Dice Coefficient, Specificity and Sensitivity.After evaluating each interpolation method we concluded that linear interpolation was the most accurate interpolation method, producing the best segmented volume for a faster ground truth determination method.
Brown, Ryan Charles. „IRIS: Intelligent Roadway Image Segmentation“. Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49105.
Der volle Inhalt der QuelleMaster of Science
Claudio, Pedro. „Automated Visual Database Creation for a Ground Vehicle Simulator“. Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2638.
Der volle Inhalt der QuellePh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering
Kumar, Prashant. „Online 3D Reconstruction and Ground Segmentation using Drone based Long Baseline Stereo Vision System“. Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/98009.
Der volle Inhalt der QuelleMS
Brandin, Martin, und Roger Hamrén. „Classification of Ground Objects Using Laser Radar Data“. Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1572.
Der volle Inhalt der QuelleAccurate 3D models of natural environments are important for many modelling and simulation applications, for both civilian and military purposes. When building 3D models from high resolution data acquired by an airborne laser scanner it is de-sirable to separate and classify the data to be able to process it further. For example, to build a polygon model of a building the samples belonging to the building must be found.
In this thesis we have developed, implemented (in IDL and ENVI), and evaluated algorithms for classification of buildings, vegetation, power lines, posts, and roads. The data is gridded and interpolated and a ground surface is estimated before the classification. For the building classification an object based approach was used unlike most classification algorithms which are pixel based. The building classifica-tion has been tested and compared with two existing classification algorithms.
The developed algorithm classified 99.6 % of the building pixels correctly, while the two other algorithms classified 92.2 % respective 80.5 % of the pixels correctly. The algorithms developed for the other classes were tested with thefollowing result (correctly classified pixels): vegetation, 98.8 %; power lines, 98.2 %; posts, 42.3 %; roads, 96.2 %.
Turner, Russell Sean School of Biological Earth & Environmental Science UNSW. „An airborne Lidar canopy segmentation approach for estimating above-ground biomass in coastal eucalypt forests“. Awarded by:University of New South Wales. School of Biological, Earth and Environmental Science, 2006. http://handle.unsw.edu.au/1959.4/27362.
Der volle Inhalt der QuelleChristie, Gordon A. „Collaborative Unmanned Air and Ground Vehicle Perception for Scene Understanding, Planning and GPS-denied Localization“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/83807.
Der volle Inhalt der QuellePh. D.
Bücher zum Thema "Ground segmentation"
Verheggen, Pieter Paul. Nieuwe Nederlanders: Etnomarketing voor diversiteitsbeleid. Alphen aan den Rijn: Samsom, 2001.
Den vollen Inhalt der Quelle findenMcVey, Dominic, und Adam Crosier. Generating insight and building segmentation models in social marketing. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198717690.003.0007.
Der volle Inhalt der QuelleMoore, Gordon, John A. Quelch und Emily Boudreau. Consumer Segmentation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190886134.003.0006.
Der volle Inhalt der QuelleCaplovitz, Gideon P., Alex Boswell und Kyle Killebrew. The Bar-Cross-Ellipse Illusion. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0012.
Der volle Inhalt der QuelleMulder, S. H. Euromarketing: Nieuwe Nederlanders: Feiten, cijfers en trends (Trendreeks). Motivaction Amsterdam, 1998.
Den vollen Inhalt der Quelle findenDemographic Targeting: The Essential Role of Population Groups in Retail Marketing. Ashgate Publishing, 2002.
Den vollen Inhalt der Quelle findenCastellani, Claudia, und Marianne Wootton. Crustacea: Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199233267.003.0021.
Der volle Inhalt der QuelleBouassida, Ines, und Abdel-Rahmen El Lahga. Public–Private Wage Disparities, Employment, and Labor Market Segmentation in Tunisia. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799863.003.0004.
Der volle Inhalt der QuelleVogt, Manuel. Mobilization and Conflict in Multiethnic States. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190065874.001.0001.
Der volle Inhalt der QuelleRadner, Hilary, und Alistair Fox. Film Analysis: Image and Movement. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474422888.003.0002.
Der volle Inhalt der QuelleBuchteile zum Thema "Ground segmentation"
Elgammal, Ahmed. „Figure-Ground Segmentation—Pixel-Based“. In Visual Analysis of Humans, 31–51. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-997-0_3.
Der volle Inhalt der QuelleLeibe, Bastian. „Figure-Ground Segmentation—Object-Based“. In Visual Analysis of Humans, 53–70. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-997-0_4.
Der volle Inhalt der QuelleKohlberger, Timo, Vivek Singh, Chris Alvino, Claus Bahlmann und Leo Grady. „Evaluating Segmentation Error without Ground Truth“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, 528–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33415-3_65.
Der volle Inhalt der QuelleNordlund, Peter, und Jan-Olof Eklundh. „Real-Time Maintenance of Figure-Ground Segmentation“. In Lecture Notes in Computer Science, 115–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49256-9_8.
Der volle Inhalt der QuelleHodge, Victoria, Garry Hollier, John Eakins und Jim Austin. „Eliciting Perceptual Ground Truth for Image Segmentation“. In Lecture Notes in Computer Science, 320–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11788034_33.
Der volle Inhalt der QuelleZhou, Jinghao, Sukmoon Chang, Dimitris N. Metaxas, Binsheng Zhao, Lawrence H. Schwartz und Michelle S. Ginsberg. „Automatic Detection and Segmentation of Ground Glass Opacity Nodules“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 784–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866565_96.
Der volle Inhalt der QuelleMaire, Michael. „Simultaneous Segmentation and Figure/Ground Organization Using Angular Embedding“. In Computer Vision – ECCV 2010, 450–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15552-9_33.
Der volle Inhalt der QuellePacker, Ben, Stephen Gould und Daphne Koller. „A Unified Contour-Pixel Model for Figure-Ground Segmentation“. In Computer Vision – ECCV 2010, 338–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15555-0_25.
Der volle Inhalt der QuelleLiang, Yuyu, Mengjie Zhang und Will N. Browne. „A Supervised Figure-Ground Segmentation Method Using Genetic Programming“. In Applications of Evolutionary Computation, 491–503. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16549-3_40.
Der volle Inhalt der QuelleLiang, Yuyu, Mengjie Zhang und Will N. Browne. „Multi-objective Genetic Programming for Figure-Ground Image Segmentation“. In Lecture Notes in Computer Science, 134–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28270-1_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ground segmentation"
Chen Tongtong, Dai Bin, Liu Daxue, Zhang Bo und Liu Qixu. „3D LIDAR-based ground segmentation“. In 2011 First Asian Conference on Pattern Recognition (ACPR 2011). IEEE, 2011. http://dx.doi.org/10.1109/acpr.2011.6166587.
Der volle Inhalt der QuelleBeuren, Arlete Teresinha, Alceu de Souza Britto und Jacques Facon. „Sky/Ground Segmentation Using Different Approaches“. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206876.
Der volle Inhalt der QuelleHofbauer, Heinz, Fernando Alonso-Fernandez, Peter Wild, Josef Bigun und Andreas Uhl. „A Ground Truth for Iris Segmentation“. In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.101.
Der volle Inhalt der QuelleRen, Xiaofeng, und Jitendra Malik. „Tracking as Repeated Figure/Ground Segmentation“. In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383177.
Der volle Inhalt der QuelleRoberts, G. A. „Model Guided Segmentation Of Ground Targets“. In Applications of Artificial Intelligence V, herausgegeben von John F. Gilmore. SPIE, 1987. http://dx.doi.org/10.1117/12.940620.
Der volle Inhalt der QuelleAdão, Milena Menezes, Silvio Jamil F. Guimarães und Zenilton K. G. Patrocı́nio Jr. „Evaluation of machine learning applied to the realignment of hierarchies for image segmentation“. In XXXII Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sibgrapi.est.2019.8311.
Der volle Inhalt der QuelleKuettel, D., und V. Ferrari. „Figure-ground segmentation by transferring window masks“. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247721.
Der volle Inhalt der QuelleAn, Chang, Dawei Yin und Henry S. Baird. „Document Segmentation Using Pixel-Accurate Ground Truth“. In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.69.
Der volle Inhalt der QuelleYuan, Ding, Jingjing Qiang, Jianfei Li, Hong Zhang und Xiaoyan Luo. „Figure-ground Image Segmentation via Semantic Information“. In 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2019. http://dx.doi.org/10.1109/rcar47638.2019.9043955.
Der volle Inhalt der QuelleHernandez, Jorge, und Beatriz Marcotegui. „Point cloud segmentation towards urban ground modeling“. In 2009 Joint Urban Remote Sensing Event. IEEE, 2009. http://dx.doi.org/10.1109/urs.2009.5137562.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ground segmentation"
Carlberg, Matthew, James Andrews, Peiran Gao und Avideh Zakhor. Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada538860.
Der volle Inhalt der QuelleHodgdon, Taylor, Anthony Fuentes, Jason Olivier, Brian Quinn und Sally Shoop. Automated terrain classification for vehicle mobility in off-road conditions. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40219.
Der volle Inhalt der Quelle