Auswahl der wissenschaftlichen Literatur zum Thema „Grid sensitivity“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Grid sensitivity" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Grid sensitivity"

1

Somayajula, Gopichand, und James E. Bernard. „Grid sensitivity analysis“. Finite Elements in Analysis and Design 7, Nr. 4 (Februar 1991): 307–15. http://dx.doi.org/10.1016/0168-874x(91)90046-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lian, Shuai, Bintang Li, Jianbo Wang und Rui Jiang. „On-line Update Method for the Sensitivity Consistency Model of Interconnected Power Grid Based on Electric Power Big Data“. E3S Web of Conferences 256 (2021): 01014. http://dx.doi.org/10.1051/e3sconf/202125601014.

Der volle Inhalt der Quelle
Annotation:
Real-time fast calculation of the power flow of the interconnected power grid is an important guarantee for the reliable operation of the interconnected power grid. The topology of the interconnected power grid is complex, and the calculation of the power flow of the whole network is large and timeconsuming. The sensitivity equivalent model can effectively simplify the interconnected power grid and shorten the time of the power flow calculation of the whole network. The operating state of the power grid is constantly changing. In order to ensure the accuracy of the power flow calculation results, it is necessary to update the uniform sensitivity equivalent model in real time. Due to factors such as the vertical management system between the interconnected power grids and the principle of commercial confidentiality, it is difficult to share information between interconnected power grids in real time, and the sensitivity equivalent model cannot be updated in real time, resulting in too much error in the calculation results and no reference value. To solve this problem, this paper proposes an online update method for the sensitivity equivalent model of the interconnected power grid based on power big data to solve the problem of excessive power flow calculation errors caused by the untimely update of the equivalent model parameters, and to ensure the operational reliability of the interconnected power grid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt und M. N. Levy. „The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity“. Geoscientific Model Development Discussions 7, Nr. 3 (25.06.2014): 4081–117. http://dx.doi.org/10.5194/gmdd-7-4081-2014.

Der volle Inhalt der Quelle
Annotation:
Abstract. We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Buzzard, Gregery T., und Dongbin Xiu. „Variance-Based Global Sensitivity Analysis via Sparse-Grid Interpolation and Cubature“. Communications in Computational Physics 9, Nr. 3 (März 2011): 542–67. http://dx.doi.org/10.4208/cicp.230909.160310s.

Der volle Inhalt der Quelle
Annotation:
AbstractThe stochastic collocation method using sparse grids has become a popular choice for performing stochastic computations in high dimensional (random) parameter space. In addition to providing highly accurate stochastic solutions, the sparse grid collocation results naturally contain sensitivity information with respect to the input random parameters. In this paper, we use the sparse grid interpolation and cubature methods of Smolyak together with combinatorial analysis to give a computationally efficient method for computing the global sensitivity values of Sobol’. This method allows for approximation of all main effect and total effect values from evaluation of f on a single set of sparse grids. We discuss convergence of this method, apply it to several test cases and compare to existing methods. As a result which may be of independent interest, we recover an explicit formula for evaluating a Lagrange basis interpolating polynomial associated with the Chebyshev extrema. This allows one to manipulate the sparse grid collocation results in a highly efficient manner.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt und M. N. Levy. „The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity“. Geoscientific Model Development 7, Nr. 6 (27.11.2014): 2803–16. http://dx.doi.org/10.5194/gmd-7-2803-2014.

Der volle Inhalt der Quelle
Annotation:
Abstract. We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, for regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mo, Yixiang, Jianfeng Tang, Zhongkai Fan, Tao Hu, Fen Lin, Ruomei Xie, Shuai Yuan, Shuaibin Liu, Hongzhi Yuan und Yanliang Tan. „Design of multi-layer grid in a giant electrostatic collection vessel of ultra-high sensitivity radon monitor“. Journal of Instrumentation 17, Nr. 07 (01.07.2022): T07011. http://dx.doi.org/10.1088/1748-0221/17/07/t07011.

Der volle Inhalt der Quelle
Annotation:
Abstract Developing an ultra-high sensitivity electrostatic collection radon monitor benefits the scientific experiments of China Jinping Underground Laboratory. Here, a one cubic meter electrostatic collection vessel with a multi-layer hemispherical metal grid was designed to increase the collection efficiency of positively charged Po-218 ions. The 3D model of the giant electrostatic collection vessel was constructed using the COMSOL Multiphysics simulation software, and the potential and electric field distributions in the vessel were simulated. Numerical simulation results were obtained according to the different radii and voltages applied to the grid. The electric field between the vessel wall and grid, between two grids, and between the grid and surface of the PIPS detector must be set uniformly to reduce the collection time of the positively charged Po-218 ions. Simulation results showed that setting a charged metal grid in the vessel can optimize the electric field distribution, and setting a two-layer charged metal grid in the giant vessel can further increase the cost performance. The average collection times of the electrostatic collection vessel with the two-layer grid along the vertical and oblique lines approximately 15% and 13% of that without the grid. The rates of positively charged Po-218 ions that could pass through the one and two-layer metal grids were 86.78% and 50%. Optimizing the electric field can greatly increase the sensitivity of radon monitors and reduce the humidity restrictions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Luhtala, Roni, Henrik Alenius und Tomi Roinila. „Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements“. Energies 13, Nr. 5 (04.03.2020): 1173. http://dx.doi.org/10.3390/en13051173.

Der volle Inhalt der Quelle
Annotation:
Rapidly increasing demand for renewable energy has created a need for the photovoltaic and wind farms to be placed in various locations that have diverse and possibly time-variant grid conditions. A mismatch between the grid impedance and output admittance of an inverter causes impedance-based stability issues, which appear as power quality problems and poor transient performance. Grid synchronization with phase-locked loop (PLL) introduces a negative-resistance-like behavior to inverter output admittance. High control bandwidth of the PLL makes the system sensitive to impedance-based stability issues when the inverter is connected to a weak grid that has high impedance. However, very conservative tunings lead to overly damped dynamic responses in strong grids, where the control performance and power quality can be improved by applying higher PLL control bandwidths. Continuous evaluation of grid conditions makes it possible to avoid the risk of instability and poor dynamic responses, as the inverter output admittance can be re-shaped online to continuously match the grid conditions. The present work proposes method for adaptive control of the PLL based on the real-time measurements of the grid impedance, applying pseudo-random binary sequence (PRBS) injections. The method limits the PLL bandwidth in weak grids to avoid stability issues and increases the control bandwidth in strong grids to improve voltage-tracking, and thus overall control performance. The method is verified through simulations and experimental laboratory tests in a kW-scale system. The results show that optimizing the PLL bandwidth with respect to the grid conditions is highly beneficial for system performance and stability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhao, Bing, und Anand Asundi. „Microscopic grid methods—resolution and sensitivity“. Optics and Lasers in Engineering 36, Nr. 5 (November 2001): 437–50. http://dx.doi.org/10.1016/s0143-8166(01)00071-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ec¸a, L., und M. Hoekstra. „On the Grid Sensitivity of the Wall Boundary Condition of the k-ω Turbulence Model“. Journal of Fluids Engineering 126, Nr. 6 (01.11.2004): 900–910. http://dx.doi.org/10.1115/1.1845492.

Der volle Inhalt der Quelle
Annotation:
This paper presents a study on the k-ω turbulence model with regard to the numerical implementation of the ω boundary condition at a solid wall, where ω tends to infinity. Three different implementations are tested in the calculation of a simple two-dimensional turbulent flow over a flat plate. Grid refinement studies in grids with different near-wall grid line spacings are performed to assess the numerical uncertainty of the predicted drag coefficient CD. The results are compared with the predictions of several alternative algebraic, one-equation, and two-equation eddy-viscosity turbulence models. For the same level of grid refinement, the estimated uncertainty of CD obtained with the k-ω model is one order of magnitude larger than for all the other models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pagaldipti, N., und A. Chattopadhyay. „A discrete semianalytical procedure for aerodynamic sensitivity analysis including grid sensitivity“. Computers & Mathematics with Applications 32, Nr. 3 (August 1996): 61–71. http://dx.doi.org/10.1016/0898-1221(96)00113-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Grid sensitivity"

1

Garmroodi, Doiran Mehdi. „Sensitivity Analysis for Future Grid Stability Studies“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15978.

Der volle Inhalt der Quelle
Annotation:
The increasing penetration of converter-interfaced generators (CIGs) has raised concerns about the stability and security of future grids (FGs). These resources affect power systems dynamics in many ways including reducing system inertia, interacting with existing generators, changing power flow paths, etc. In this thesis, we carry out a sensitivity study to explore the structural impacts from CIGs on the damping and frequency stability of power systems. Initially, we study the impact of the intermittent power from wind turbine generators (WTGs) on the damping of the electromechanical oscillations in power systems. It will be shown that the inability of WTGs to provide synchronizing and damping torque to the system jeopardize the small signal stability of power systems. Stable operation regions, in terms of wind penetration and tie-line power, are derived and the impact of load flexibility on these regions are discussed. Next, we have studied the impact of the inertia distribution on the damping of the inter-area modes in power systems. It is shown that tie-line power has a significant role on the damping of the inter-area modes. Moreover, we show that dynamic voltage control and inertia emulation can be utilized to improve the damping of the system. By developing an oscillatory recovery model for power system loads, we have also studied the impact of load oscillations on the damping of the inter-area modes. It is shown that the load dynamics can have a significant influence on the electromechanical oscillations of power systems. Finally, the frequency support capability of WTGs is investigated and the performance of different techniques in utilizing the kinetic energy of the WTGs to assist the frequency stability of power systems is evaluated. A novel time-variable droop characteristic is proposed to enhance the contribution of WTGs in supporting system frequency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Won, Eric C. „Sensitivity of a general circulation inverse model to sub-grid scale parametrization coefficients“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/58432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Balsubramanian, Ravishankar. „Error estimation and grid adaptation for functional outputs using discrete-adjoint sensitivity analysis“. Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-10032002-113749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chang, Young Min. „Eulerian shape design sensitivity analysis and optimization for plane elasticity with fixed grid“. [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0004040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tran, Vinh X. „A sensitivity study of numerical solutions of the South China Sea ocean model to various grids generated by grid generation technique“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA305841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mohebbi, Farzad. „Optimal shape design based on body-fitted grid generation“. Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9427.

Der volle Inhalt der Quelle
Annotation:
Shape optimization is an important step in many design processes. With the growing use of Computer Aided Engineering in the design chain, it has become very important to develop robust and efficient shape optimization algorithms. The field of Computer Aided Optimal Shape Design has grown substantially over the recent past. In the early days of its development, the method based on small shape perturbation to probe the parameter space and identify an optimal shape was routinely used. This method is nothing but an educated trial and error method. A key development in the pursuit of good shape optimization algorithms has been the advent of the adjoint method to compute the shape sensitivities more formally and efficiently. While undoubtedly, very attractive, this method relies on very sophisticated and advanced mathematical tools which are an impediment to its wider use in the engineering community. It that spirit, it is the purpose of this thesis to propose a new shape optimization algorithm based on more intuitive engineering principles and numerical procedures. In this thesis, the new shape optimization procedure which is proposed is based on the generation of a body-fitted mesh. This process maps the physical domain into a regular computational domain. Based on simple arguments relating to the use of the chain rule in the mapped domain, it is shown that an explicit expression for the shape sensitivity can be derived. This enables the computation of the shape sensitivity in one single solve, a performance analogous to the adjoint method, the current state-of-the art. The discretization is based on the Finite Difference method, a method chosen for its simplicity and ease of implementation. This algorithm is applied to the Laplace equation in the context of heat transfer problems and potential flows. The applicability of the proposed algorithm is demonstrated on a number of benchmark problems which clearly confirm the validity of the sensitivity analysis, the most important aspect of any shape optimization problem. This thesis also explores the relative merits of different minimization algorithms and proposes a technique to “fix” meshes when inverted element arises as part of the optimization process. While the problems treated are still elementary when compared to complex multiphysics engineering problems, the new methodology presented in this thesis could apply in principle to arbitrary Partial Differential Equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cohan, Daniel Shepherd. „Photochemical Formation and Cost-Efficient Abatement of Ozone: High-Order Sensitivity Analysis“. Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-09152004-150617/unrestricted/cohan%5Fdaniel%5Fs%5F200412%5Fphd.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2005.
Russell, Armistead G., Committee Chair ; Chameides, William L., Committee Member ; Wang, Yuhang, Committee Member ; Noonan, Douglas, Committee Member ; Chang, Michael E., Committee Member. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lakshminarayanan, Anand. „Analysis of the sensitivity of photochemical airshed modeling to grid size and spatial and temporal distributions aof mobile source emissions“. Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eriksson, Olle. „Sensitivity and Uncertainty Analysis Methods : with Applications to a Road Traffic Emission Model“. Doctoral thesis, Linköping : Linköpings universitet, Deparment of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Conway, Declan. „The development of a grid-based hydrological model of the Blue Nile and the sensitivity of Nile river discharge to climate change“. Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Grid sensitivity"

1

N, Tiwari S., und United States. National Aeronautics and Space Administration., Hrsg. Grid sensitivity for aerodynamic optimization and flow analysis. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mechanical Engineering and Mechanics, College of Engineering and Technology, Old Dominion University, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

N, Tiwari S., und United States. National Aeronautics and Space Administration., Hrsg. Grid sensitivity for aerodynamic optimization and flow analysis. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mechanical Engineering and Mechanics, College of Engineering and Technology, Old Dominion University, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1945-, Burns John A., und Langley Research Center, Hrsg. A PDE sensitivity equation for optimal aerodynamic design. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

T, Patera Anthony, Peraire Jaume und Langley Research Center, Hrsg. A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

N, Tiwari S., und United States. National Aeronautics and Space Administration., Hrsg. An analytical approach to grid sensitivity analysis for NACA four-digit wing sections. Norfolk, Va: Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

C, Hall Kenneth, und United States. National Aeronautics and Space Administration., Hrsg. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades: Final technical report. Durham, NC: Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Conway, Declan. The development of a grid-based hydrologic model of the Blue Nile and the sensitivity of Nile River discharge to climate change. Norwich: University of East Anglia, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

N, Tiwari S., und United States. National Aeronautics and Space Administration., Hrsg. Sensitivity analysis and optimization of aerodynamic configurations with blend surfaces. Norfolk, Va: Dept. of Mechanical Engineering, College of Engineering & Technology, Old Dominion University, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

C, Taylor Arthur, Barnwell Richard W und United States. National Aeronautics and Space Administration., Hrsg. Aerodynamic shape sensitivity analysis and design optimization of complex configurations using unstructured grids. [Washington, DC: National Aeronautics and Space Administration, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sensitivity Studies on a Limited Area Mesoscale Model: An Examination ofLateral Boundary Placement, Grid Resolution and Nesting Type. Storming Media, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Grid sensitivity"

1

Khalilpour, Kaveh Rajab, und Anthony Vassallo. „Sensitivity Analysis of Grid-Connected PV-Battery Systems“. In Community Energy Networks With Storage, 83–97. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-652-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chen, Mingjie, Pingjie Li und Yanru Jin. „Deformation sensitivity analysis of large span grid structure“. In Building Seismic Monitoring and Detection Technology, 275–80. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003409564-35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tatsis, Vasileios A., und Konstantinos E. Parsopoulos. „Experimental Sensitivity Analysis of Grid-Based Parameter Adaptation Method“. In Heuristics for Optimization and Learning, 335–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58930-1_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Merelli, Ivan, Dario Pescini, Ettore Mosca, Paolo Cazzaniga, Carlo Maj, Giancarlo Mauri und Luciano Milanesi. „Grid Computing for Sensitivity Analysis of Stochastic Biological Models“. In Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23178-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Blain, C. A., J. J. Westerink und R. A. Luettich. „Domain and Grid Sensitivity Studies for Hurricane Storm Surge Predictions“. In Computational Methods in Water Resources X, 1275–82. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Shanshan, Zhongfa Zhou und Xiaotao Sun. „Study of Ecosystem Sensitivity Based on Grid GIS in Leishan County“. In Communications in Computer and Information Science, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3966-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sharma, Sumit, Yog Raj Sood und Ankur Maheshwari. „Technoeconomic Feasibility and Sensitivity Analysis of Off-Grid Hybrid Energy System“. In Lecture Notes in Electrical Engineering, 113–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2354-7_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barella, Richard, Duc Nguyen, Ryan Winter, Kuei-Ti Lu, Scott Wallace, Xinghui Zhao und Eduardo Cotilla-Sanchez. „A Sensitivity Based Approach for Efficient PMU Deployment on Smart Grid“. In Communications in Computer and Information Science, 199–215. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27753-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Jie, Guowei Zhu, Jing Li, Chang Liu und Linping Tong. „Baseline Model of High-Sensitivity Data Transfer in Power Grid Business“. In Lecture Notes on Data Engineering and Communications Technologies, 673–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1157-8_81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ghorbaniasl, Ghader, und Chris Lacor. „Sensitivity of SGS Models and of Quality of LES to Grid Irregularity“. In Quality and Reliability of Large-Eddy Simulations, 155–66. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8578-9_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Grid sensitivity"

1

Aydonat, Meric, und Farid N. Najm. „Power grid correction using sensitivity analysis“. In 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2010. http://dx.doi.org/10.1109/iccad.2010.5653903.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

SALADINO, ANTHONY, SARAT PRAHARAJ und FRANK COLLINS. „PARCEQ2D heat transfer grid sensitivity analysis“. In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Haileselassie, T. M., und K. Uhlen. „Frequency sensitivity analysis of AC grids connected to MTDC grid“. In 9th IET International Conference on AC and DC Power Transmission (ACDC 2010). IET, 2010. http://dx.doi.org/10.1049/cp.2010.0990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

SADREHAGHIGHI, IDEEN, ROBERT SMITH und SURENDRA TIWARI. „An analytical approach to grid sensitivity analysis“. In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lockard, David P., Meelan M. Choudhari und Pieter G. Buning. „Grid Sensitivity Study for Slat Noise Simulations“. In 20th AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Krause, Olav, Kaining Zhao, Christian Rehtanz, Edmund Handschin, Sebastian Lehnhoff und Horst F. Wedde. „Grid sensitivity analysis for coordinated voltage control“. In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE, 2008. http://dx.doi.org/10.1109/drpt.2008.4523615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Santos, Luis, Luiz Tobaldini, Ramon Papa, Guilherme Oliveira, Antônio Jesus und Sutikno Wirogo. „Grid Sensitivity Effects in Collection Efficiency Computation“. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pagaldipti, Narayanan, und Aditi Chattopadhyay. „A discrete semi-analytical procedure for aerodynamic sensitivity analysis including grid sensitivity“. In 5th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rehimi, Sharara, Rahmatollah Mirzaei und Hassan Bevrani. „A Simplified Interconnected Microgrids Frequency Response Model Using Frequency Sensitivity Approach“. In 2019 Smart Grid Conference (SGC). IEEE, 2019. http://dx.doi.org/10.1109/sgc49328.2019.9056620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

SADREHAGHIGHI, IDEEN, ROBERTE SMITH und SURENDRA TIWARI. „Grid and aerodynamic sensitivity analyses of airplane components“. In 11th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3475.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Grid sensitivity"

1

Luke, P. N., M. Amman, J. S. Lee und H. Yaver. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity. Office of Scientific and Technical Information (OSTI), Juni 1998. http://dx.doi.org/10.2172/666049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Michael Pernice. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting. Office of Scientific and Technical Information (OSTI), Oktober 2012. http://dx.doi.org/10.2172/1058089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dumas, Melissa, Binita Kc und Colin I. Cunliff. Extreme Weather and Climate Vulnerabilities of the Electric Grid: A Summary of Environmental Sensitivity Quantification Methods. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1558514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie