Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Grid modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Grid modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Grid modeling"
Khokhlov, Nikolai Igorevich, Vladislav O. Stetsyuk und Ivan A. Mitskovets. „Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method“. Computer Research and Modeling 11, Nr. 6 (Dezember 2019): 1049–59. http://dx.doi.org/10.20537/2076-7633-2019-11-6-1049-1059.
Der volle Inhalt der QuelleRosay, Sophie, Simon Weber und Marcello Mulas. „Modeling grid fields instead of modeling grid cells“. Journal of Computational Neuroscience 47, Nr. 1 (08.07.2019): 43–60. http://dx.doi.org/10.1007/s10827-019-00722-8.
Der volle Inhalt der QuelleMacDonald, Alexander E., Jacques Middlecoff, Tom Henderson und Jin-Luen Lee. „A general method for modeling on irregular grids“. International Journal of High Performance Computing Applications 25, Nr. 4 (05.12.2010): 392–403. http://dx.doi.org/10.1177/1094342010385019.
Der volle Inhalt der QuelleXu, S., B. Wang und J. Liu. „On the use of Schwarz–Christoffel conformal mappings to the grid generation for global ocean models“. Geoscientific Model Development 8, Nr. 10 (29.10.2015): 3471–85. http://dx.doi.org/10.5194/gmd-8-3471-2015.
Der volle Inhalt der QuelleXu, S., B. Wang und J. Liu. „On the use of Schwarz–Christoffel conformal mappings to the grid generation for global ocean models“. Geoscientific Model Development Discussions 8, Nr. 2 (13.02.2015): 1337–73. http://dx.doi.org/10.5194/gmdd-8-1337-2015.
Der volle Inhalt der QuelleBaboshin, Andrey. „Ontology modeling of grid-applications“. SPIIRAS Proceedings, Nr. 11 (17.03.2014): 252. http://dx.doi.org/10.15622/sp.11.16.
Der volle Inhalt der QuelleKaramchandani, Prakash, Krish Vijayaraghavan und Greg Yarwood. „Sub-Grid Scale Plume Modeling“. Atmosphere 2, Nr. 3 (24.08.2011): 389–406. http://dx.doi.org/10.3390/atmos2030389.
Der volle Inhalt der QuelleIvanenko, Sergey A., und Galina V. Muratova. „Adaptive grid shallow water modeling“. Applied Numerical Mathematics 32, Nr. 4 (April 2000): 447–82. http://dx.doi.org/10.1016/s0168-9274(99)00063-x.
Der volle Inhalt der QuelleChitkusheva-Dimitrovska, Biljana, Marko Cepin, Roman Golubovski und Hristina Spasevska. „Modeling photovoltaic grid inter-shading“. Thermal Science 24, Nr. 6 Part B (2020): 4183–95. http://dx.doi.org/10.2298/tsci200116169c.
Der volle Inhalt der QuelleLudwig, A. „Wire grid modeling of surfaces“. IEEE Transactions on Antennas and Propagation 35, Nr. 9 (September 1987): 1045–48. http://dx.doi.org/10.1109/tap.1987.1144220.
Der volle Inhalt der QuelleDissertationen zum Thema "Grid modeling"
Sjolte, Jonas. „Marine renewable energy conversion : Grid and off-grid modeling, design and operation“. Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26004.
Der volle Inhalt der QuelleLiu, Xin. „Scalable online simulation for modeling grid dynamics /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3158471.
Der volle Inhalt der QuelleElyas, Seyyed Hamid 8045266. „Synthetic Modeling of Power Grids Based on Statistical Analysis“. VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4888.
Der volle Inhalt der QuelleBürgler, Josef Franz. „Discretization and grid adaptation in semiconductor device modeling /“. [S.l.] : [s.n.], 1990. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9146.
Der volle Inhalt der QuelleSrivastava, Ravi K. „An Adaptive Grid Algorithm for Air Quality Modeling“. NCSU, 1998. http://www.lib.ncsu.edu/theses/available/etd-19980919-174712.
Der volle Inhalt der QuelleSRIVASTAVA, RAVI K. An Adaptive Grid Algorithm for Air Quality Modeling. (Under the direction of Dr. D. Scott McRae.)The physical and chemical processes responsible for air pollution span a wide range of spatial scales. For example, there may be point sources, such as power plants that are characterized by relatively small spatial scales compared to the size of the region that may be impacted by such sources. To obtain accurate distributions of pollutants in an air quality simulation, the pertinent spatial scales can be resolved by varying the physical grid node spacing.A new dynamic adaptive grid algorithm, the Dynamic Solution Adaptive Grid Algorithm - PPM (DSAGA-PPM), is developed for use in air quality modeling. Given a fixed number of grid nodes, DSAGA-PPM distributes these nodes in response to spatial resolution requirements of the solution field and then updates the solution field based on the resulting distribution of nodes. DSAGA-PPM is implemented dynamically to resolve any evolving solution features. Tests with model problems demonstrate that DSAGA-PPM calculates advection much more accurately than the corresponding static grid algorithm (SGA-PPM) and, therefore, would assure more accurate starting concentrations for chemistry calculations. For example, after one revolution of four rotating cones, 87% of each of the cone peaks is retained using DSAGA-PPM while only 63% is retained using SGA-PPM. The root-mean-square errors in DSAGA-PPM results are about 4-5 times lower than those in the corresponding SGA-PPM results. Tests with reacting species and sources demonstrate that DSAGA-PPM provides the needed solution resolution. In simulations of a rotating and reacting conical puff, the root-mean-square errors in DSAGA-PPM results are about 4-6 times lower than those in the corresponding SGA-PPM results. In simulations of a power plant plume, the DSAGA-PPM solution reflects the early, the intermediate, and the mature stages of plume development; these stages are not seen in the corresponding SGA-PPM solution. Finally, it is demonstrated that DSAGA-PPM provides an accurate description of the ozone production resulting due to dynamic interactions between emissions from two power plants and an urban area. In general, these results reflect that DSAGA-PPM is able to provide accurate spatial and temporal resolution of rapidly changing and complex concentration fields. Performance achieved by DSAGA-PPM in model problem simulations indicates that it can provide accurate air quality modeling solutions at costs 10 times less than those incurred in obtaining equivalent static grid solutions.
Hayashi, Koichi 1967. „Variable grid finite-difference modeling including surface topography“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9367.
Der volle Inhalt der Quelle"August 6, 1999."
Includes bibliographical references (leaves 188-190).
We have developed a two-dimensional viscoelastic finite-difference modeling method for highly complex surface topography and subsurface structures. Realistic modeling of seismic wave propagation in the near surface region is complicated by many factors, such as strong heterogeneity, topographic relief and large attenuation. In order to account for these complications, we use a velocity-stress staggered grid and employ an 0(2,4) accurate viscoelastic finite-difference scheme. The implementation includes an irregular free surface condition for topographic relief and a variable grid technique in the shallow parts of the model. Several methods of free surface condition are bench marked, and an accurate and simple condition is proposed. In the proposed free surface condition, stresses are calculated so that the shear and normal stresses perpendicular to the boundary are zero. The calculation of particle velocities does not involve any specific calculations, and the particle velocities are set to zero above the free surface. A stable variable grid method is introduced, where we use a three times finer grid in the near surface or low velocity region compared to the rest of the model. In order to reduce instability, we apply averaging or weighting to the replacement of the coarse grid components within the fine grid. The method allows us to avoid any limitation of the shape of the grid size boundary. Numerical tests indicate that approximately ten grid-points per shortest wavelength with the variable grid method results in accurate calculations. The method requires a stair-shaped discretization of a free surface. We investigated the stair-shaped structures, and found that the cause of the dispersion from irregular free surface is mainly a numerical error due to the large grid sizes rather than the Rayleigh waves scattering due to the stair-shaped boundary. The finite-difference modeling is applied to the investigation of near surface wave propagation. Several numerical simulations are performed to show the characters of wave propagation in the near surface region. The simulations show that the low velocity thin layers just below the surface and anelastic attenuation have significant effect on surface seismic record. The 2-D modeling of near surface structure beneath a 2-D refraction survey line is carried out. The comparison of the observed data with theoretical waveforms is performed. The characters in the observed data can be explained by a subsurface model constructed by P-wave traveltime tomography.
by Koichi Hayashi.
S.M.
Sankaran, Vaidyanathan. „Sub-grid Combustion Modeling for Compressible Two-Phase Flows“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5274.
Der volle Inhalt der QuelleMiller, Daniel K. „Wire grid modeling of the Linearly Tapered Slot Antenna“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26339.
Der volle Inhalt der QuelleIlves, Kalle. „Modeling and Design of Modular MultilevelConverters for Grid Applications“. Licentiate thesis, KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105779.
Der volle Inhalt der QuelleQC 20121127
Stergiadis, Dimitris. „Persona modeling by crowdsourcing using the repertory grid technique“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140916.
Der volle Inhalt der QuelleBücher zum Thema "Grid modeling"
Guo, Hui. Measurement-based load modeling for smart grid planning. Magdeburg: Otto-von-Guericke-Universität Magdeburg, 2012.
Den vollen Inhalt der Quelle findenBürgler, Josef F. Discretization and grid adaptation in semiconductor device modeling. Konstanz: Hartung-Gorre, 1990.
Den vollen Inhalt der Quelle findenMazo, Aleksandr, und Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Der volle Inhalt der QuelleMiller, Daniel K. Wire grid modeling of the Linearly Tapered Slot Antenna. Monterey, Calif: Naval Postgraduate School, 1989.
Den vollen Inhalt der Quelle findenPham, Tien D. Wire grid modeling for microwave heating and termal runway. Ottawa: National Library of Canada, 1991.
Den vollen Inhalt der Quelle findenPlikas, Atanasis. Numerical modeling of fibre suspensions in grid-generated turbulent flow. Ottawa: National Library of Canada, 2000.
Den vollen Inhalt der Quelle findenHeidmann, James D. Coarse grid modeling of turbine film cooling flows using volumetric source terms. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Den vollen Inhalt der Quelle findenAbdelaziz Mohamed, Mohamed, und Ali Mohamed Eltamaly. Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64795-1.
Der volle Inhalt der QuelleCenter, Lewis Research. Surface modeling, grid generation, and related issues in computational fluid dynamic (CFD) solutions: Proceedings of a workshop sponsored by the NASA Steering Committee on Surface Modeling and Grid Generation and held at NASA Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. Cleveland, Ohio: Lewis Research Center, 1995.
Den vollen Inhalt der Quelle findenBarger, Raymond L. Trajectory fitting in function space with application to analytic modeling of surfaces. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Grid modeling"
Zou, Shengrong. „Modeling Distributed Algorithm Using B“. In Grid and Cooperative Computing, 683–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24680-0_108.
Der volle Inhalt der QuelleLai, Hong Feng. „Modeling Grid Workflow by Coloured Grid Service Net“. In Advances in Grid and Pervasive Computing, 204–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13067-0_24.
Der volle Inhalt der QuelleLi, Baiyan, Wensheng Yao und Jinyuan You. „Modeling Trust Management System for Grids“. In Grid and Cooperative Computing, 899–906. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24679-4_151.
Der volle Inhalt der QuelleKerbyson, Darren J., Adolfy Hoisie und Shawn D. Pautz. „Performance Modeling of Deterministic Transport Computations“. In Performance Analysis and Grid Computing, 21–39. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0361-3_2.
Der volle Inhalt der QuelleHuang, Chenlin, Hua-Ping Hu und Zhiying Wang. „Modeling Time-Related Trust“. In Grid and Cooperative Computing - GCC 2004 Workshops, 382–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30207-0_48.
Der volle Inhalt der QuelleHuang, Sen, Thomas Sevilla und Wangda Zuo. „Modeling in building-to-grid integration“. In Building Performance Simulation for Design and Operation, 559–85. Second edition. | Abingdon, Oxon ; New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.1201/9780429402296-17.
Der volle Inhalt der QuelleCope, Jason, Craig Hartsough, Peter Thornton, Henry Tufo, Nathan Wilhelmi und Matthew Woitaszek. „Grid-BGC: A Grid-Enabled Terrestrial Carbon Cycle Modeling System“. In Euro-Par 2005 Parallel Processing, 1285–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11549468_140.
Der volle Inhalt der QuelleChristodoulopoulos, Konstantinos, Emmanouel Varvarigos, Chris Develder, Marc De Leenheer und Bart Dhoedt. „Job Demand Models for Optical Grid Research“. In Optical Network Design and Modeling, 127–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72731-6_15.
Der volle Inhalt der QuelleZhang, Yue Hong, Li Hao und Zhong Shan Yang. „Security Scheme in Wireless Grid“. In Advanced Research on Computer Education, Simulation and Modeling, 453–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21783-8_74.
Der volle Inhalt der QuelleChi, Heng-Yu, Wen-Huang Cheng, Ming-Syan Chen und Arvin Wen Tsui. „MOSRO: Enabling Mobile Sensing for Real-Scene Objects with Grid Based Structured Output Learning“. In MultiMedia Modeling, 207–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04114-8_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Grid modeling"
Sasaki, Hiroshi, Takatsugu Oya, Masaaki Kondo und Hiroshi Nakamura. „Power-performance modeling of heterogeneous cluster-based web servers“. In 2009 10th IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 2009. http://dx.doi.org/10.1109/grid.2009.5353057.
Der volle Inhalt der QuelleWei Liu, Jose Cunha, Vitor Duarte und Tiejian Luo. „A grid workload modeling approach for intelligent grid“. In 2009 International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2009. http://dx.doi.org/10.1109/icnsc.2009.4919384.
Der volle Inhalt der QuelleYigitbasi, Nezih, Matthieu Gallet, Derrick Kondo, Alexandru Iosup und Dick Epema. „Analysis and modeling of time-correlated failures in large-scale distributed systems“. In 2010 11th IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 2010. http://dx.doi.org/10.1109/grid.2010.5697961.
Der volle Inhalt der QuelleBertran, Ramon, Yolanda Becerra, David Carrera, Vicenc Beltran, Marc Gonzalez, Xavier Martorell, Jordi Torres und Eduard Ayguade. „Accurate energy accounting for shared virtualized environments using PMC-based power modeling techniques“. In 2010 11th IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 2010. http://dx.doi.org/10.1109/grid.2010.5697889.
Der volle Inhalt der QuelleJin, Jiangming, Stephen John Turner, Bu-Sung Lee, Shyh-hao Kuo, Rick Siow Mong Goh und Terence Hung. „Performance modeling for runtime kernel adaptation: A case study on infectious disease simulation“. In 2010 11th IEEE/ACM International Conference on Grid Computing (GRID 2010). IEEE, 2010. http://dx.doi.org/10.1109/grid.2010.5698009.
Der volle Inhalt der QuelleIsaji, Tatsusaburo, Eoin Howlett, Colleen Dalton und Eric Anderson. „Stepwise-Continuous-Variable-Rectangular Grid“. In Seventh International Conference on Estuarine and Coastal Modeling. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40628(268)33.
Der volle Inhalt der QuelleAfshar, Hady, Zahra Moravej und Mohsen Niasati. „Modeling and optimization of microgrid considering emissions“. In 2013 Smart Grid Conference (SGC). IEEE, 2013. http://dx.doi.org/10.1109/sgc.2013.6733812.
Der volle Inhalt der QuelleCaillabet, Y., E. Flauraud und F. J. S. Schneider. „Local Grid Refinement Methods for Basin Modeling – Migration Modeling“. In ECMOR IX - 9th European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.9.p011.
Der volle Inhalt der QuelleCloteaux, Brian. „Limits in modeling power grid topology“. In 2013 IEEE 2nd Network Science Workshop (NSW). IEEE, 2013. http://dx.doi.org/10.1109/nsw.2013.6609189.
Der volle Inhalt der QuelleHsiung, Pao-Ann. „Smart grid design modeling and prototyping“. In 2014 3rd International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions). IEEE, 2014. http://dx.doi.org/10.1109/icrito.2014.7014657.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Grid modeling"
Dawson, Lon Andrew, Stephen Joseph Verzi, Drew Levin, Darryl J. Melander, Asael Hal Sorensen, Katherine Regina Cauthen, Felipe Wilches Bernal, Timothy M. Berg, Olga Lavrova und Ross Guttromson. Integrated Cyber/Physical Grid Resiliency Modeling. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1482777.
Der volle Inhalt der QuelleJorgenson, Jennie L., und Paul L. Denholm. Modeling Primary Frequency Response for Grid Studies. Office of Scientific and Technical Information (OSTI), Januar 2019. http://dx.doi.org/10.2172/1489895.
Der volle Inhalt der QuelleSholander, Peter E. Application Note: Power Grid Modeling With Xyce. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1191079.
Der volle Inhalt der QuelleBender, Sadie R., Matthew R. Oster, Trevor D. Hardy, Jesse T. Holzer und James D. Follum. Future Grid State Modeling for Transactive Systems. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1602140.
Der volle Inhalt der QuelleBrinkman, Gregory, Paul Denholm, Easan Drury, Erik Ela, Trieu Mai, Robert Margolis und Matthew Mowers. Grid Modeling for the SunShot Vision Study. Office of Scientific and Technical Information (OSTI), Februar 2012. http://dx.doi.org/10.2172/1036369.
Der volle Inhalt der QuelleHanif, Sarmad, Vishvas Chalishazar und Donald Hammerstrom. Modeling the Functional Forms of Grid Disturbances. Office of Scientific and Technical Information (OSTI), Oktober 2020. http://dx.doi.org/10.2172/1765364.
Der volle Inhalt der QuelleCochran, Jaquelin, und David Palchak. Greening the Grid: Advances in Production Cost Modeling for India Renewable Energy Grid Integration Study. Office of Scientific and Technical Information (OSTI), Juli 2017. http://dx.doi.org/10.2172/1371644.
Der volle Inhalt der QuelleBent, Russell Whitford. Grid Modernization Initiative Peer Review Extreme Event Modeling 1.4.17. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471305.
Der volle Inhalt der QuelleBaptista, Antonio M., und Cheryl A. Blain. Adaptive Unstructured Grid Generation for Modeling of Coastal Margins. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada613940.
Der volle Inhalt der QuelleKao, C. Y. J., D. L. Langley, J. M. Reisner und W. S. Smith. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674906.
Der volle Inhalt der Quelle