Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Greener synthesis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Greener synthesis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Greener synthesis"
Mooney, Madison, Audithya Nyayachavadi und Simon Rondeau-Gagné. „Eco-friendly semiconducting polymers: from greener synthesis to greener processability“. Journal of Materials Chemistry C 8, Nr. 42 (2020): 14645–64. http://dx.doi.org/10.1039/d0tc04085a.
Der volle Inhalt der QuelleKharissova, Oxana V., H. V. Rasika Dias, Boris I. Kharisov, Betsabee Olvera Pérez und Victor M. Jiménez Pérez. „The greener synthesis of nanoparticles“. Trends in Biotechnology 31, Nr. 4 (April 2013): 240–48. http://dx.doi.org/10.1016/j.tibtech.2013.01.003.
Der volle Inhalt der QuelleLawrenson, Stefan, Michael North, Fanny Peigneguy und Anne Routledge. „Greener solvents for solid-phase synthesis“. Green Chemistry 19, Nr. 4 (2017): 952–62. http://dx.doi.org/10.1039/c6gc03147a.
Der volle Inhalt der QuellePolshettiwar, Vivek, und Rajender S. Varma. „Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation“. Pure and Applied Chemistry 80, Nr. 4 (01.01.2008): 777–90. http://dx.doi.org/10.1351/pac200880040777.
Der volle Inhalt der QuelleJicsinszky, László, und Giancarlo Cravotto. „Toward a Greener World—Cyclodextrin Derivatization by Mechanochemistry“. Molecules 26, Nr. 17 (27.08.2021): 5193. http://dx.doi.org/10.3390/molecules26175193.
Der volle Inhalt der QuelleLawrenson, Stefan B. „Greener solvents for solid-phase organic synthesis“. Pure and Applied Chemistry 90, Nr. 1 (26.01.2018): 157–65. http://dx.doi.org/10.1515/pac-2017-0505.
Der volle Inhalt der QuelleBhardwaj, Brahamdutt, Pritam Singh, Arun Kumar, Sandeep Kumar und Vikas Budhwar. „Eco-Friendly Greener Synthesis of Nanoparticles“. Advanced Pharmaceutical Bulletin 10, Nr. 4 (09.08.2020): 566–76. http://dx.doi.org/10.34172/apb.2020.067.
Der volle Inhalt der QuelleKharissova, Oxana V., Boris I. Kharisov, César Máximo Oliva González, Yolanda Peña Méndez und Israel López. „Greener synthesis of chemical compounds and materials“. Royal Society Open Science 6, Nr. 11 (November 2019): 191378. http://dx.doi.org/10.1098/rsos.191378.
Der volle Inhalt der QuelleGangurde, S. A., K. S. Laddha und S. V. Joshi. „A GREENER APPROACH TO SYNTHESIS OF DIACEREIN“. INDIAN DRUGS 56, Nr. 04 (28.04.2019): 7–12. http://dx.doi.org/10.53879/id.56.04.11784.
Der volle Inhalt der QuelleIravani, Siavash, und Rajender S. Varma. „Greener synthesis of lignin nanoparticles and their applications“. Green Chemistry 22, Nr. 3 (2020): 612–36. http://dx.doi.org/10.1039/c9gc02835h.
Der volle Inhalt der QuelleDissertationen zum Thema "Greener synthesis"
Howie, Rowena Anne. „Metal-organic frameworks : towards greener synthesis“. Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41707/.
Der volle Inhalt der QuelleNada, Majid Hameed. „Greener synthesis of nanocrystalline ZSM-5“. Thesis, University of Iowa, 2016. https://ir.uiowa.edu/etd/3149.
Der volle Inhalt der QuelleHarsanyi, Antal. „Elemental fluorine for the greener synthesis of life-science building blocks“. Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11705/.
Der volle Inhalt der QuelleLuitel, Govinda Prasad. „Greener synthesis of some new isoxazolidine and isoxazoline derivatives via 1,3-dipolar cycloaddition reactions and studies of biological activities of the cycloadducts“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2576.
Der volle Inhalt der QuelleNasr, Kifah. „Enzyme-catalyzed synthesis of polyesters by step-growth polymerization : a promising approach towards a greener synthetic pathway“. Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR030.
Der volle Inhalt der QuelleEnzyme-catalyzed polymerization have been witnessing a growing attention in recent years as an eco-friendly substitute to metal-based catalysis. The objective of our work is to synthesize a series of polyesters via enzymatic catalysis based on different aliphatic and aromatic diols and diesters, where we focused on the influence of reaction parameters, monomer structures, and depicted the advantages and limitation of enzymatic catalysis in polymer synthesis. The enzyme used throughout our work was Novozym 435, a lipase from Candida antarctica, immobilized on an acrylic resin. In Chapter 1, we reviewed the different methods and approaches used in the literature to synthesize polymers via enzymatic catalysis. In Chapter 2, we performed the reaction between hexane-1,6-diol and diethyl adipate via a two-step polycondensation approach where we monitored the effect of certain parameters on the number average molecular weight (Mn). The influence of temperature, vacuum, and the amount of enzyme loading were determined using a central composite design. Other factors such as the reaction media, oligomerization time, and catalyst recyclability were also assessed. In Chapter 3 furan-based copolyesters were synthesized, where we showed that we can incorporate higher amounts of furan when using aliphatic diols with longer chains such as dodecane-1,12-diol. In Chapter 4, levoglucosan, an anhydrous 6-carbon ring structure and a pyrolysis product of carbohydrates such as starch and cellulose, was reacted against different chain length diesters in the presence of aliphatic diols and Novozym 435 as a catalyst. The polyesters produced were limited in their number average molecular weight (Mn) and the amount of levoglucosan that was successfully incorporated into the polymeric structure. Nevertheless, by increasing the chain length of the diester, we were able to produce a copolymer containing higher amounts of levoglucosan and a higher molecular weight
Rai, Neelam. „Greener synthesis and 1, 3-dipolar cycloaddition reactions of a amino nitrones and studies of biological activities of the cycloadducts“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2663.
Der volle Inhalt der QuelleMestres, Ricard Sola. „Greener approaches for chemical synthesis : ball mill and microwave assisted synthesis of fluoxetine and duloxetine and enantioselective catalysed addition of organometallic reagents to aldehydes“. Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/618791/.
Der volle Inhalt der QuelleSaba, Sumbal. „Synthesis of unsymmetrical diorganyl chalcogenides by using arylboronic acids or C (sp2)-H bond functionalization of arenes under greener conditions“. reponame:Repositório Institucional da UFSC, 2016. https://repositorio.ufsc.br/xmlui/handle/123456789/168202.
Der volle Inhalt der QuelleMade available in DSpace on 2016-09-20T05:02:32Z (GMT). No. of bitstreams: 1 341356.pdf: 20337282 bytes, checksum: 2c692523891aae34c8c39befe4a17c29 (MD5) Previous issue date: 2016
No presente trabalho desenvolveram-se procedimentos robustos, econômicos e sustentável para a síntese de dicalcogentos de organoíla não simétricos usando uma variedade de ácidos borônicos arílicos substituídos e arenos [O- ou N-] subtituídos. Na primeira parte, desenvolvemos um sistema catalítico oxidativo que combina iodo/DMSO para a síntese de uma grande variedade de dicalcogenetos de diorganoíla não simétricos (S, Se, Te), utilizando vários ácidos borônicos arílicos sob irradiação de micro-ondas. As reações foram realizadas pela mistura de ácidos boronicos com os dicalgenetos desejados, na presença de 10 mol% de iodo, um equiv. ácidos borônicos arílicos II, 0,5 equiv. de vários dicalcogenetos de diorganoíla I e 2 equiv. de DMSO (como oxidante). Os produtos calcogenados desejados III foram obtidos em rendimentos de bons a excelentes. Todas as reações foram realizadas sem a exclusão de ar e umidade a 100 °C durante 10 minutos sob irradiação de microondas. Vários substituintes com diferentes efeitos eletrônicos e estéricos foram tolerados nas condições ótimas de reação. A metodologia desenvolvida demonstrou ser robusta e pode ser facilmente efetuada na escala de 10 mmol, sem qualquer perda significativa de rendimento. A química aqui descrita representa um protocolo livre de solvente e de metal de transição para a preparação de calcogenetos de diorganoíla não simétricos. O escopo da presente metodologia de acoplamento foi estendido usando trifluoroboratos de potássio vinilícos IV como uma alternativa para os ácidos borônicos, utilizando os parâmetros da condição otimizada. A reação de ditelureto e disseleneto de dirganoíla I ocorreu sem problemas e proporcionou a formação dos produtos acoplados correspondentes em rendimentos isolados de 87% e 89%. Considerando a importância dos compostos organocalcogênio, na segunda etapa deste trabalho, desenvolveu-se um método regiosseletivo, rápido e ambientalmente seguro, catalisado por iodo para a síntese de calcogentos de organoíla. Essa metodologia ocorre pela formação de ligações C-Se / C-S via clivagem oxidativa de ligação C (sp2) -H utilizando arenos [O- ou N-] substituídos. Esse processo é realizado pela calcogenação direta de dicalcogenetos de organoíla I com vários arenos VI, catalisados por 20 mol% de iodo na presença de 3 equivalentes de DMSO (como oxidante). Essa metodologia regiosseletiva, sob irradiação de micro-ondas, permitiu obter os produtos desejados funcionalizados com um substituinte organocalcogenoíla, em 10 min, em bons rendimentos. Outras vantagens desse método são: condições livres de solvente e metal de transição; procedimento experimental sem a exclusão de ar e umidade. A reação também foi efetuada em escala de 10 mmol sem perda significativa de rendimento. Além disso, por este protocolo, foi possível funcionalizar heteroarenos biologicamente importantes contendo S/Se, tais como: pirimidinas, piridinas e tiazóis. A versatilidade da metodologia desenvolvida permitiu ainda a utilização de tiofenol VIII e hidrazidas de sulfonila VIII como agentes sulfenilação e N,N-dimetilanilina IX alternativos, levando-se o produto tiolado X desejados em bom rendimentos, em um tempo de reação curto usando irradiação de micro-ondas.
Abstract : In the present work we developed robust, economical and greener procedures for the synthesis of unsymmetrical diorganyl chalcogenides by using various substituted arylboronic acids and [O or N]- containing arenes. In the first part, we developed Iodine/DMSO catalyzed oxidative system for the synthesis of a variety of unsymmetrical diorganyl chalcogenides (S, Se, Te) using various arylboronic acids under microwave irradiations. The desired chalcogenated products III were obtained in good to excellent yields in the presence of 10 mol% of iodine, one equiv. of arylboronic acids II, half equiv. of various diorganyl dichalcogenides I and 2 equiv. of DMSO (as an oxidant). All the reactions were performed without the exclusion of air and moisture at 100 0C for 10 min under microwave irradiation. Various substituents with different electronic and steric effects tolerated in the optimized reaction conditions. The developed methodology was shown to be robust and could easily be scaled-up without any significant loss of yield. The chemistry described herein represents a transition metal and solvent free method for the preparation of unsymmetrical diorganyl chalcogenides. We were also successful in scaling up the reaction in up to 10 mmol. The scope of this coupling methodology was extended by using potassium vinyltrifluoroborate IV as an alternative to boronic acid in these tellurylation and selenylation reactions by applying the optimal reaction parameters. The reaction of ditelluride and diselenide I proceeded smoothly and afforded the corresponding coupled products V in 87% and 89% isolated yield. Considering the importance of diorganyl chalcogenides, we developed a regioselective, rapid and greener iodine-catalyzed method for the synthesis of diorganyl chalcogenides through oxidative C Se/C S formation via direct C(sp2)-H bond cleavage using [O or N]-containing arenes. In this work, we reported the synthesis of unsymmetrical diorganyl chalcogenides VII via direct chalcogenation reactions between dichalcogenides I and various arenes VI catalyzed by 20 mol% of iodine in the presence of 3 equiv. of DMSO (as an oxidant). This regioselective methodology allowed us to obtain desired chalcogenated product in good to excellent yields under transition metal and solvent-free conditions, without the exclusion of air and moisture, applying microwave irradiations for 10 min. The reaction was also scaled-up to 10 mmol. Additionally, by this protocol, we were able to access biologically important Se/S containing heteroarenes, such as, pyrimidines, pyridines, thiazole. The versatility of the developed methodology was observed by using thiophenol VIII and sulfonyl hydrazides VIII as another sulfenylating agents and N,N-dimethylaniline IX, affording the desired sulfonated product X in very good yield, in a short reaction time using MW irradiation.
Dhakal, Ram Chandra. „New Approaches To Heterocycle Synthesis: A Greener Route To Structurally Complex Protonated Azomethine Imines, And Their Use In 1,3-Dipolar Cycloadditions“. ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/777.
Der volle Inhalt der QuelleSharma, Prawin Kumar. „Greener approach to the synthesis of some novel class of isoxazolidine and isoxazoline derivatives using N-methyl and N-phenyl-a-chloro nitrones“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/1884.
Der volle Inhalt der QuelleBücher zum Thema "Greener synthesis"
Nag, Ahindra. Greener Synthesis of Organic Compounds, Drugs and Natural Products. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162.
Der volle Inhalt der QuelleWuts, Peter G. M., Hrsg. Greene's Protective Groups in Organic Synthesis. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118905074.
Der volle Inhalt der QuellePatti, Angela. Green Approaches To Asymmetric Catalytic Synthesis. Dordrecht: Angela Patti, 2011.
Den vollen Inhalt der Quelle findenKoichi, Mikami, Hrsg. Green reaction media in organic synthesis. Oxford: Blackwell Pub., 2005.
Den vollen Inhalt der Quelle findenMittal, Vikas. Renewable polymers: Synthesis, processing, and technology. Hoboken, N.J: John Wiley & Sons, 2012.
Den vollen Inhalt der Quelle finden1962-, Anastas Paul T., Bartlett Laurence und Williamson Tracy C. 1963-, Hrsg. Green chemical syntheses and processes. Washington, D.C: American Chemical Society, 2000.
Den vollen Inhalt der Quelle findenRoberto, Ballini, Hrsg. Eco-friendly synthesis of fine chemicals. Cambridge, UK: RSC Pub., 2009.
Den vollen Inhalt der Quelle findenMicro- and nanostructured polymer systems: From synthesis to applications. Toronto: Apple Academic Press, 2015.
Den vollen Inhalt der Quelle findenZhang, Wei, und Berkeley W. Cue. Green techniques for organic synthesis and medicinal chemistry. Chichester, West Sussex: John Wiley & Sons, 2012.
Den vollen Inhalt der Quelle findenInstilling religion in Greek and Turkish Nationalism: A "sacred synthesis". New York: Palgrave Macmillan, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Greener synthesis"
Studzińska, Renata, Renata Kołodziejska und Daria Kupczyk. „Greener Synthesis of Potential Drugs“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 195–227. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-12.
Der volle Inhalt der QuelleKołodziejska, Renata, Renata Studzińska, Hanna Pawluk und Alina Woźniak. „Greener Synthesis of Natural Products“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 241–87. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-14.
Der volle Inhalt der QuelleOldenhuis, Nathan J., Aaron M. Whittaker und Vy M. Dong. „Greener Methods for Amide Bond Synthesis“. In Methods in Pharmacology and Toxicology, 35–96. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-0716-1579-9_2.
Der volle Inhalt der QuelleMatsubara, Hiroshi, Takuji Kawamoto und Ilhyong Ryu. „CHAPTER 11. Challenges of Using Fluorous Solvents for Greener Organic Synthesis“. In Sustainable Organic Synthesis, 313–38. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164842-00313.
Der volle Inhalt der QuellePatil, Aniruddha B., und Bhalchandra M. Bhanage. „Sonochemistry: A Greener Protocol for Nanoparticles Synthesis“. In Handbook of Nanoparticles, 143–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15338-4_4.
Der volle Inhalt der QuellePatil, Aniruddha B., und Bhalchandra M. Bhanage. „Sonochemistry: A Greener Protocol for Nanoparticles Synthesis“. In Handbook of Nanoparticles, 1–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13188-7_4-1.
Der volle Inhalt der QuelleMiller, Roland M., Francis J. Osonga und Omowunmi A. Sadik. „Synthesis and Biological Applications of Greener Nanoparticles“. In Interfaces Between Nanomaterials and Microbes, 247–68. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021. | “A science publishers book.”: CRC Press, 2021. http://dx.doi.org/10.1201/9780429321269-11.
Der volle Inhalt der QuelleAcosta-Guzmán, Paola, und Diego Gamba-Sánchez. „Greener Methods for Halogenation of Aromatic Compounds“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 41–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-3.
Der volle Inhalt der QuelleEksiler, Kubra, Yoshito Andou und Tessei Kawano. „Chapter 11. Fabrication of Biodegradable Cellulose Composite Through a Greener Reaction Process“. In Cellulose Nanoparticles : Synthesis and Manufacturing, 236–57. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019545-00236.
Der volle Inhalt der QuelleVillaseñor-Basulto, Déborah L., Mary-Magdalene Pedavoah und Eric R. Bandala. „Plant Materials for the Synthesis of Nanomaterials: Greener Sources“. In Handbook of Ecomaterials, 1–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_88-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Greener synthesis"
Monteiro, J. L., A. F. Torre, M. P. Paixão und A. G. Corrêa. „Asymmetric synthesis of pyranocumarins under greener conditions“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013101414540.
Der volle Inhalt der Quellede la Torre, Beatriz G., Ashish Kumar, Yahya Jad, Jonathan M. Collins, Simona Serban, Othman Almusaim und Fernando Albericio. „Solid-phase peptide synthesis: the Greener, the Better“. In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.099.
Der volle Inhalt der QuelleFeu, Karla S., Anna M. Deobald, Arlene G. Corrêa und Marcio W. Paixão. „Tandem Organocatalytic Functionalization and Fisher Indole Synthesis: A Greener Approach for the Synthesis of Indoles“. In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0342-1.
Der volle Inhalt der QuelleKumari, Sonam, Renu Sharma und Ruchi Bharti. „ZnO nanoparticles: A promosing greener catalytic approach for synthesis of bioactive heterocycles“. In INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114413.
Der volle Inhalt der QuelleGupta, Girish Kumar, Vinod Kumar und Vipin Saini. „Greener synthesis and DNA photocleavage activity of 1, 5-Diaryl-3-trifluoromethylpyrazole derivatives“. In The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-04827.
Der volle Inhalt der QuelleOnyenkeadi, Victor, Suela Kellici und Basu Saha. „Greener Synthesis of 1,2-Butylene Carbonate from CO2 Using Graphene-Inorganic Nanocomposite Catalysis“. In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-052-3.15.
Der volle Inhalt der QuelleArya, Kapil, Diwan Rawat und Pooja Gusain. „Greener One Pot Synthesis of 2-Amino-4-arylquinoline-3-carbonitriles in Neat Water Under Microwaves“. In The 16th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/ecsoc-16-01061.
Der volle Inhalt der QuelleAgarwal, Shikha, Dinesh Kr Agarwal, Priyanka Kalal und Divyani Gandhi. „A comparative study: Greener vs conventional synthesis of 4H-pyrimido[2,1-b]benzothiazoles via Biginelli reaction“. In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032807.
Der volle Inhalt der Quelle„Greener Synthesis of Chitosan/Acrylic Acid (AA) Hydrogel and Its Application as Drying Agent for Organic Solvents and Crude Oil Fractions“. In June 29-30, 2017 London (UK). DiRPUB, 2017. http://dx.doi.org/10.15242/dirpub.c0617017.
Der volle Inhalt der QuelleVieira, Lucas Campos Curcino, und Arlene G. Corrêa. „Green synthesis of chalcone derivatives via Suzuki coupling“. In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0238-1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Greener synthesis"
Saffron, Christopher, und John W. Frost. Large Scale Green Synthesis of 1,2,4-Butanetriol. Fort Belvoir, VA: Defense Technical Information Center, März 2007. http://dx.doi.org/10.21236/ada466203.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of D-1,2,4 - Butantetroil from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada593490.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of D-1,2,4-Butanetriol from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2009. http://dx.doi.org/10.21236/ada548856.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of D-1,2,4-Butanetriol from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada548871.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada593488.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada548823.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada548824.
Der volle Inhalt der QuelleFrost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2009. http://dx.doi.org/10.21236/ada548825.
Der volle Inhalt der QuellePindwal, Aradhana. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1342556.
Der volle Inhalt der QuelleRahmathullah, Azmathullah. Green synthesis of Solanum xanthocarpum mediated selenium nanoparticles and its biomedical applications. Peeref, November 2022. http://dx.doi.org/10.54985/peeref.2211p7161250.
Der volle Inhalt der Quelle