Auswahl der wissenschaftlichen Literatur zum Thema „Greener synthesis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Greener synthesis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Greener synthesis"

1

Mooney, Madison, Audithya Nyayachavadi und Simon Rondeau-Gagné. „Eco-friendly semiconducting polymers: from greener synthesis to greener processability“. Journal of Materials Chemistry C 8, Nr. 42 (2020): 14645–64. http://dx.doi.org/10.1039/d0tc04085a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kharissova, Oxana V., H. V. Rasika Dias, Boris I. Kharisov, Betsabee Olvera Pérez und Victor M. Jiménez Pérez. „The greener synthesis of nanoparticles“. Trends in Biotechnology 31, Nr. 4 (April 2013): 240–48. http://dx.doi.org/10.1016/j.tibtech.2013.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lawrenson, Stefan, Michael North, Fanny Peigneguy und Anne Routledge. „Greener solvents for solid-phase synthesis“. Green Chemistry 19, Nr. 4 (2017): 952–62. http://dx.doi.org/10.1039/c6gc03147a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Polshettiwar, Vivek, und Rajender S. Varma. „Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation“. Pure and Applied Chemistry 80, Nr. 4 (01.01.2008): 777–90. http://dx.doi.org/10.1351/pac200880040777.

Der volle Inhalt der Quelle
Annotation:
The utilization of green chemistry techniques is dramatically reducing chemical waste and reaction times as has recently been proven in several organic syntheses and chemical transformations. To illustrate these advantages in the synthesis of bioactive heterocycles, we have studied various environmentally benign protocols that involve greener alternatives. Microwave (MW) irradiation of neat reactants catalyzed by the surfaces of recyclable mineral supports, such as alumina, silica, clay, or their "doped" versions, enables the rapid one-pot assembly of heterocyclic compounds, such as flavonoids, related benzopyrans, and quinolone derivatives. The strategy to assemble oxygen and nitrogen heterocycles from in situ generated reactive intermediates via enamines or using hypervalent iodine reagents is described. Examples of multicomponent reactions that can be adapted for rapid parallel synthesis include solventless synthesis of dihydropyrimidine-2(1H)-ones (Biginelli reaction), imidazo[1,2-a]annulated pyridines, pyrazines, and pyrimidines (Ugi reaction). The relative advantages of greener pathways, which use MW irradiation and eco-friendly aqueous reaction medium, for the synthesis of various heterocycles, such as N-aryl azacycloalkanes, isoindoles, 1,3-dioxane, 1,3,4-oxadiazole, 1,3,4-thiadiazole, pyrazole, and diazepines, are also summarized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jicsinszky, László, und Giancarlo Cravotto. „Toward a Greener World—Cyclodextrin Derivatization by Mechanochemistry“. Molecules 26, Nr. 17 (27.08.2021): 5193. http://dx.doi.org/10.3390/molecules26175193.

Der volle Inhalt der Quelle
Annotation:
Cyclodextrin (CD) derivatives are a challenge, mainly due to solubility problems. In many cases, the synthesis of CD derivatives requires high-boiling solvents, whereas the product isolation from the aqueous methods often requires energy-intensive processes. Complex formation faces similar challenges in that it involves interacting materials with conflicting properties. However, many authors also refer to the formation of non-covalent bonds, such as the formation of inclusion complexes or metal–organic networks, as reactions or synthesis, which makes it difficult to classify the technical papers. In many cases, the solubility of both the starting material and the product in the same solvent differs significantly. The sweetest point of mechanochemistry is the reduced demand or complete elimination of solvents from the synthesis. The lack of solvents can make syntheses more economical and greener. The limited molecular movements in solid-state allow the preparation of CD derivatives, which are difficult to produce under solvent reaction conditions. A mechanochemical reaction generally has a higher reagent utilization rate. When the reaction yields a good guest co-product, solvent-free conditions can be slower than in solution conditions. Regioselective syntheses of per-6-amino and alkylthio-CD derivatives or insoluble cyclodextrin polymers and nanosponges are good examples of what a greener technology can offer through solvent-free reaction conditions. In the case of thiolated CD derivatives, the absence of solvents results in significant suppression of the thiol group oxidation, too. The insoluble polymer synthesis is also more efficient when using the same molar ratio of the reagents as the solution reaction. Solid reactants not only reduce the chance of hydrolysis of multifunctional reactants or side reactions, but the spatial proximity of macrocycles also reduces the length of the spacing formed by the crosslinker. The structure of insoluble polymers of the mechanochemical reactions generally is more compact, with fewer and shorter hydrophilic arms than the products of the solution reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lawrenson, Stefan B. „Greener solvents for solid-phase organic synthesis“. Pure and Applied Chemistry 90, Nr. 1 (26.01.2018): 157–65. http://dx.doi.org/10.1515/pac-2017-0505.

Der volle Inhalt der Quelle
Annotation:
AbstractSolid-phase organic synthesis is an essential method for the rapid synthesis of complex biological structures and libraries of small organic molecules. However, it is often associated with the use of large quantities of problematic solvents for the removal of excess reagents and reaction by-products. Given that solvent will often be the biggest contributor to waste generated in the average pharmaceutical/fine-chemical process, its exchange for a more desirable alternative often presents the biggest gains in terms of reducing environmental impact. This review aims to explore recent approaches to performing solid-phase organic synthesis, and associated solid-phase peptide synthesis, in neoteric solvents and reaction media that present greener alternatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bhardwaj, Brahamdutt, Pritam Singh, Arun Kumar, Sandeep Kumar und Vikas Budhwar. „Eco-Friendly Greener Synthesis of Nanoparticles“. Advanced Pharmaceutical Bulletin 10, Nr. 4 (09.08.2020): 566–76. http://dx.doi.org/10.34172/apb.2020.067.

Der volle Inhalt der Quelle
Annotation:
The exploitation of naturally obtained resources like biopolymers, plant-based extracts, microorganisms etc., offers numerous advantages of environment-friendliness and biocompatibility for various medicinal and pharmaceutical applications, whereas hazardous chemicals are not utilized for production protocol. Plant extracts based synthetic procedures have drawn consideration over conventional methods like physical and chemical procedures to synthesize nanomaterials. Greener synthesis of nanomaterials has become an area of interest because of numerous advantages such as non-hazardous, economical, and feasible methods with variety of applications in biomedicine, nanotechnology and nano-optoelectronics, etc.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kharissova, Oxana V., Boris I. Kharisov, César Máximo Oliva González, Yolanda Peña Méndez und Israel López. „Greener synthesis of chemical compounds and materials“. Royal Society Open Science 6, Nr. 11 (November 2019): 191378. http://dx.doi.org/10.1098/rsos.191378.

Der volle Inhalt der Quelle
Annotation:
Modern trends in the greener synthesis and fabrication of inorganic, organic and coordination compounds, materials, nanomaterials, hybrids and nanocomposites are discussed. Green chemistry deals with synthesis procedures according to its classic 12 principles, contributing to the sustainability of chemical processes, energy savings, lesser toxicity of reagents and final products, lesser damage to the environment and human health, decreasing the risk of global overheating, and more rational use of natural resources and agricultural wastes. Greener techniques have been applied to synthesize both well-known chemical compounds by more sustainable routes and completely new materials. A range of nanosized materials and composites can be produced by greener routes, including nanoparticles of metals, non-metals, their oxides and salts, aerogels or quantum dots. At the same time, such classic materials as cement, ceramics, adsorbents, polymers, bioplastics and biocomposites can be improved or obtained by cleaner processes. Several non-contaminating physical methods, such as microwave heating, ultrasound-assisted and hydrothermal processes or ball milling, frequently in combination with the use of natural precursors, are of major importance in the greener synthesis, as well as solventless and biosynthesis techniques. Non-hazardous solvents including ionic liquids, use of plant extracts, fungi, yeasts, bacteria and viruses are also discussed in relation with materials fabrication. Availability, necessity and profitability of scaling up green processes are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gangurde, S. A., K. S. Laddha und S. V. Joshi. „A GREENER APPROACH TO SYNTHESIS OF DIACEREIN“. INDIAN DRUGS 56, Nr. 04 (28.04.2019): 7–12. http://dx.doi.org/10.53879/id.56.04.11784.

Der volle Inhalt der Quelle
Annotation:
Diacerein, also known as diacetylrhein (1,8-diacetoxy-3-carboxyanthraquinone), is a slow-acting active pharmaceutical ingredient of the anthraquinone class used to treat joint diseases such as osteoarthritis (swelling and pain in the joints). It works by inhibiting interleukin-1 beta and demonstrates anti-arthritic activity without inhibiting prostaglandin synthesis. Diacerein-containing medications are registered in some European Union and Asian countries and are included as a treatment option on several international therapeutic guidelines. Different approaches have been reported for the synthesis of this compound. Many approaches have been reported for preparation of diacerein specially employing reagents like hexavalent chromium compounds which are toxic and effluent-unfriendly. We report herein synthesis of diacerein, a potent antiarthritic ingredient, by employing a greener chemical method and also synthesis of acetyl vanillic acid by employing similar scheme having same functional groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Iravani, Siavash, und Rajender S. Varma. „Greener synthesis of lignin nanoparticles and their applications“. Green Chemistry 22, Nr. 3 (2020): 612–36. http://dx.doi.org/10.1039/c9gc02835h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Greener synthesis"

1

Howie, Rowena Anne. „Metal-organic frameworks : towards greener synthesis“. Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41707/.

Der volle Inhalt der Quelle
Annotation:
Metal Organic Frameworks (MOFs) are an interesting class of porous materials, for potential commercial applications such as storage and separation of gases. However, the industrial use of MOFs would require their synthesis on a much larger scale, necessitating the development of scalable synthesis techniques that are both greener and faster than those currently employed. This Thesis describes the recent progress towards the clean and scalable synthesis of MOF materials via the use of high temperature water (HTW) and related solvents. Supercritical ethanol extraction is also presented as a greener alternative for the removal of impurities, such as unreacted ligand, from within the pores of MOFs. Chapter 1 introduces the concepts explored during this work, such as green chemistry, and includes a brief overview of MOF materials, covering their properties, applications and synthesis, as well as the challenges facing their industrial implementation. The properties of HTW and supercritical ethanol, in relation to their use as cleaner solvents for MOF processing, are summarised and the aims of this project stated. The high pressure equipment and analysis techniques used during this work are then described in Chapter 2. Detailed descriptions and standard operating procedures for the following equipment are included: high pressure mini autoclaves; a continuous flow HTW reactor for the synthesis of MOF materials; and a supercritical ethanol extraction set up, for the removal of impurities from within MOF samples. (Information regarding a new continuous flow rig developed during this project can be found in Chapter 6). The use of supercritical ethanol as a cleaner alternative method for the removal of uncoordinated ligand from within the pores of MOF materials is explored in Chapter 3, where MIL 53(Al), an archetypal aluminium MOF, was used as an example throughout. The impact of this technique on the properties of the resulting MOF samples are also considered within this chapter. Chapter 4 illustrates the broad applicability of HTW to MOF materials, demonstrating the synthesis of a wide range of MOFs, primarily as fast batch reactions. Unlike typical MOF syntheses which require several days, reaction times of just 10 minutes were used during this investigation. This highlights the fact that the synthesis of MOFs in HTW is both faster and cleaner than many previous methods. The variety of MOFs synthesised in this chapter contain different metal centres and ligands, confirming that HTW synthesis is not limited to a small sub set of MOF materials. MOFs successfully synthesised in this manner include: MIL 96(Al); NOTT 300(Al); NOTT-300(In); scandium terephthalate, plus amine and nitro group containing analogues; and MOF 74(Ni). The synthesis of a larger (10 g) sample of one of these MOFs, NOTT 300(Al), is the subject of Chapter 5, which can be viewed as a case study into the challenges facing the scalable synthesis of MOF materials in both batch and continuous flow. Building on experience gained during this investigation, a new continuous flow HTW MOF synthesis reactor was designed and constructed, the development and testing of which forms the basis of Chapter 6. This new reactor was then implemented in Chapter 7, which describes the HTW synthesis of a range of functionalised aluminium MOFs, based on the MIL 53(Al) structure, containing additional amine or nitro groups, in both batch and flow. These MOFs were the first examples of the synthesis of functionalised MOF materials in HTW, demonstrating the flexibility of this technique and suggesting that it may be successfully applied to a much wider range of MOFs in the future. Finally, Chapter 8 revisits the aims set out in Chapter 1, providing a summary of the progress made towards meeting each aim and highlighting possible future directions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nada, Majid Hameed. „Greener synthesis of nanocrystalline ZSM-5“. Thesis, University of Iowa, 2016. https://ir.uiowa.edu/etd/3149.

Der volle Inhalt der Quelle
Annotation:
Nanocrystalline ZSM-5 zeolite, which is a well-known catalyst used in a variety of applications in industry, environment, and medicine, can be synthesized using different methods. However, a big challenge in synthesizing nanocrsytalline ZSM-5 is the use of an organic template such as TPAOH, which is very expensive. The template is required to facilitate the growth of the nanocrsytalline ZSM-5 during the synthesis. However, to use the nanocrsytalline ZSM-5, the template has to be removed by a calcination process to open the pores and reveal the active surface of the nanocrystalline ZSM-5. The calcination process requires a high temperature for a long time to remove the organic template. Consequently, synthesizing nanocrystalline ZSM-5 by using a templated method is considered to be time, energy, and materials inefficient. In addition, the production of CO2 from the calcination process is a negative impact on the environment. Therefore, finding another method to synthesize nanocrystalline ZSM-5 without using an organic template would be beneficial. Here, nanocrystalline ZSM-5 was synthesized successfully in high yield and quality by using a seed-assisted method and without using the organic template. In addition, the effect of synthesis temperature, synthesis time, basic environment, amount of seeds, size of seeds, aging time, and use of calcined and uncalcined seeds are investigated in this study. The synthesized nanocrystalline ZSM-5 materials were characterized by using X-ray diffraction (XRD), gas adsorption isotherm (BET/BJH), and transmission electron microscopy (TEM).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Harsanyi, Antal. „Elemental fluorine for the greener synthesis of life-science building blocks“. Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11705/.

Der volle Inhalt der Quelle
Annotation:
Fluorinated organic compounds are increasingly important in many areas of our modern lives, especially in pharmaceutical and agrochemical applications where the incorporation of this element can have a major influence on biochemical properties. The introduction of the carbon-fluorine bond into such systems is typically carried out using well established multistep, nucleophilic fluorination processes that usually lead to large waste streams. Despite the availability of alternative electrophilic fluorination methods which have found several applications on discovery scale, the direct transformation of C-H to C-F bonds on large scale is scarce. Elemental fluorine is the only electrophilic fluorinating reagent that is viable for manufacturing scale applications, but, in spite of the advances in this field in the past 25 years, there are only a handful of processes where it is used, most notably in the manufacturing of 5-fluorouracil. In this thesis the direct fluorination of several industrially relevant organic systems was investigated with an aim to provide optimised, high yielding and scalable processes that could be compared with existing manufacturing methods using a green chemistry metrics package developed by the EU IMI Chem21 consortium.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Luitel, Govinda Prasad. „Greener synthesis of some new isoxazolidine and isoxazoline derivatives via 1,3-dipolar cycloaddition reactions and studies of biological activities of the cycloadducts“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nasr, Kifah. „Enzyme-catalyzed synthesis of polyesters by step-growth polymerization : a promising approach towards a greener synthetic pathway“. Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR030.

Der volle Inhalt der Quelle
Annotation:
La polymérisation catalysée par des enzymes a fait l'objet d'une attention croissante ces dernières années en tant qu’alternative écologique à la catalyse à base de métal. L'objectif de notre travail est de synthétiser une série de polyesters par catalyse enzymatique basée sur différents diols et diesters aliphatiques et aromatiques, où nous nous sommes concentrés sur l'influence des paramètres de réaction, des structures de monomères et avons décrit les avantages et les limites de la catalyse enzymatique dans la synthèse de polymères. L'enzyme utilisée tout au long de nos travaux était Novozym 435, une lipase de Candida antarctica, immobilisée sur une résine acrylique. Dans le Chapitre 1, nous avons passé en revue les différentes méthodes et approches utilisées dans la littérature pour synthétiser des polymères par catalyse enzymatique. Dans le Chapitre 2, nous avons effectué la réaction entre l’hexane-1,6-diol et l'adipate de diéthyle via une approche de polycondensation en deux étapes où nous avons évalué l'effet de certains paramètres sur la masse molaire moyenne en nombre (Mn). L'effet de la température, du vide et de la charge enzymatique a été déterminé à l'aide d'un plan d’expérience de type plan composite centré. D'autres facteurs tels que le milieu réactionnel, le temps d'oligomérisation et la recyclabilité de l’enzyme ont également été évalués. Dans le Chapitre 3, des copolyesters à base de furane ont été synthétisés, où nous avons montré que nous pouvons incorporer des quantités plus élevées de dérivés furaniques lors de l'utilisation de diols aliphatiques avec des chaînes plus longues tels que le dodécane-1,12-diol. Dans le Chapitre 4, le lévoglucosan, une structure cyclique anhydre à 6 carbones et un produit de pyrolyse d'hydrates de carbone tels que l'amidon et la cellulose, a réagi avec des diesters de différentes longueurs de chaîne en présence de diols aliphatiques et de Novozym 435 comme catalyseur. Les polyesters produits étaient limités en terme de masse molaire moyenne en nombre (Mn) et de quantité de lévoglucosan incorporée. En augmentant la longueur du diester, nous avons augmenté la quantité de lévoglucosan incorporée ainsi que la masse molaire moyenne en nombre
Enzyme-catalyzed polymerization have been witnessing a growing attention in recent years as an eco-friendly substitute to metal-based catalysis. The objective of our work is to synthesize a series of polyesters via enzymatic catalysis based on different aliphatic and aromatic diols and diesters, where we focused on the influence of reaction parameters, monomer structures, and depicted the advantages and limitation of enzymatic catalysis in polymer synthesis. The enzyme used throughout our work was Novozym 435, a lipase from Candida antarctica, immobilized on an acrylic resin. In Chapter 1, we reviewed the different methods and approaches used in the literature to synthesize polymers via enzymatic catalysis. In Chapter 2, we performed the reaction between hexane-1,6-diol and diethyl adipate via a two-step polycondensation approach where we monitored the effect of certain parameters on the number average molecular weight (Mn). The influence of temperature, vacuum, and the amount of enzyme loading were determined using a central composite design. Other factors such as the reaction media, oligomerization time, and catalyst recyclability were also assessed. In Chapter 3 furan-based copolyesters were synthesized, where we showed that we can incorporate higher amounts of furan when using aliphatic diols with longer chains such as dodecane-1,12-diol. In Chapter 4, levoglucosan, an anhydrous 6-carbon ring structure and a pyrolysis product of carbohydrates such as starch and cellulose, was reacted against different chain length diesters in the presence of aliphatic diols and Novozym 435 as a catalyst. The polyesters produced were limited in their number average molecular weight (Mn) and the amount of levoglucosan that was successfully incorporated into the polymeric structure. Nevertheless, by increasing the chain length of the diester, we were able to produce a copolymer containing higher amounts of levoglucosan and a higher molecular weight
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rai, Neelam. „Greener synthesis and 1, 3-dipolar cycloaddition reactions of a amino nitrones and studies of biological activities of the cycloadducts“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/handle/123456789/2663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mestres, Ricard Sola. „Greener approaches for chemical synthesis : ball mill and microwave assisted synthesis of fluoxetine and duloxetine and enantioselective catalysed addition of organometallic reagents to aldehydes“. Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/618791/.

Der volle Inhalt der Quelle
Annotation:
This PhD thesis focuses on the development of “greener” synthetic methodologies in organic synthesis. Turning chemical production into a more sustainable industry - by reducing the waste generated and the electricity consumption - is highly desired in a world with limited resources and increasing population. This thesis, in particular, focuses on three of the ‘12 Principles of Green Chemistry’, reducing the amount of solvent and energy consumption in a chemical process, and the use of catalytic reagents instead of stoichiometric. In the first chapter of this thesis, a greener synthetic route for the preparation of the antidepressant fluoxetine (Prozac) was developed. The use of ball milling allowed a decrease of the solvent used in the process, furthermore, microwave assisted heating provided a more efficient method compared to the traditional heating using an oil bath. Fluoxetine was synthesised with 47% yield through two different synthetic routes (3 and 4 steps respectively). In addition, the scope of the developed methodologies was tested by the attempted synthesis of the antidepressant duloxetine. The second chapter of this thesis focuses on the catalytic enantioselective synthesis of chiral alcohols. More specifically, two different methodologies for the catalytic enantioselective addition of organolithium reagents to aldehydes were successfully developed, achieving excellent yields and enantioselectivities. Furthermore, a new methodology for the use of organozirconium reagents as nucleophiles in the catalytic enantioselective 1,2-addition of alkenes to aldehydes was also developed. Last, the implementation of a catalytic enantioselective step to the previous syntheses of fluoxetine was attempted.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saba, Sumbal. „Synthesis of unsymmetrical diorganyl chalcogenides by using arylboronic acids or C (sp2)-H bond functionalization of arenes under greener conditions“. reponame:Repositório Institucional da UFSC, 2016. https://repositorio.ufsc.br/xmlui/handle/123456789/168202.

Der volle Inhalt der Quelle
Annotation:
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Química, 2016.
Made available in DSpace on 2016-09-20T05:02:32Z (GMT). No. of bitstreams: 1 341356.pdf: 20337282 bytes, checksum: 2c692523891aae34c8c39befe4a17c29 (MD5) Previous issue date: 2016
No presente trabalho desenvolveram-se procedimentos robustos, econômicos e sustentável para a síntese de dicalcogentos de organoíla não simétricos usando uma variedade de ácidos borônicos arílicos substituídos e arenos [O- ou N-] subtituídos. Na primeira parte, desenvolvemos um sistema catalítico oxidativo que combina iodo/DMSO para a síntese de uma grande variedade de dicalcogenetos de diorganoíla não simétricos (S, Se, Te), utilizando vários ácidos borônicos arílicos sob irradiação de micro-ondas. As reações foram realizadas pela mistura de ácidos boronicos com os dicalgenetos desejados, na presença de 10 mol% de iodo, um equiv. ácidos borônicos arílicos II, 0,5 equiv. de vários dicalcogenetos de diorganoíla I e 2 equiv. de DMSO (como oxidante). Os produtos calcogenados desejados III foram obtidos em rendimentos de bons a excelentes. Todas as reações foram realizadas sem a exclusão de ar e umidade a 100 °C durante 10 minutos sob irradiação de microondas. Vários substituintes com diferentes efeitos eletrônicos e estéricos foram tolerados nas condições ótimas de reação. A metodologia desenvolvida demonstrou ser robusta e pode ser facilmente efetuada na escala de 10 mmol, sem qualquer perda significativa de rendimento. A química aqui descrita representa um protocolo livre de solvente e de metal de transição para a preparação de calcogenetos de diorganoíla não simétricos. O escopo da presente metodologia de acoplamento foi estendido usando trifluoroboratos de potássio vinilícos IV como uma alternativa para os ácidos borônicos, utilizando os parâmetros da condição otimizada. A reação de ditelureto e disseleneto de dirganoíla I ocorreu sem problemas e proporcionou a formação dos produtos acoplados correspondentes em rendimentos isolados de 87% e 89%. Considerando a importância dos compostos organocalcogênio, na segunda etapa deste trabalho, desenvolveu-se um método regiosseletivo, rápido e ambientalmente seguro, catalisado por iodo para a síntese de calcogentos de organoíla. Essa metodologia ocorre pela formação de ligações C-Se / C-S via clivagem oxidativa de ligação C (sp2) -H utilizando arenos [O- ou N-] substituídos. Esse processo é realizado pela calcogenação direta de dicalcogenetos de organoíla I com vários arenos VI, catalisados por 20 mol% de iodo na presença de 3 equivalentes de DMSO (como oxidante). Essa metodologia regiosseletiva, sob irradiação de micro-ondas, permitiu obter os produtos desejados funcionalizados com um substituinte organocalcogenoíla, em 10 min, em bons rendimentos. Outras vantagens desse método são: condições livres de solvente e metal de transição; procedimento experimental sem a exclusão de ar e umidade. A reação também foi efetuada em escala de 10 mmol sem perda significativa de rendimento. Além disso, por este protocolo, foi possível funcionalizar heteroarenos biologicamente importantes contendo S/Se, tais como: pirimidinas, piridinas e tiazóis. A versatilidade da metodologia desenvolvida permitiu ainda a utilização de tiofenol VIII e hidrazidas de sulfonila VIII como agentes sulfenilação e N,N-dimetilanilina IX alternativos, levando-se o produto tiolado X desejados em bom rendimentos, em um tempo de reação curto usando irradiação de micro-ondas.

Abstract : In the present work we developed robust, economical and greener procedures for the synthesis of unsymmetrical diorganyl chalcogenides by using various substituted arylboronic acids and [O or N]- containing arenes. In the first part, we developed Iodine/DMSO catalyzed oxidative system for the synthesis of a variety of unsymmetrical diorganyl chalcogenides (S, Se, Te) using various arylboronic acids under microwave irradiations. The desired chalcogenated products III were obtained in good to excellent yields in the presence of 10 mol% of iodine, one equiv. of arylboronic acids II, half equiv. of various diorganyl dichalcogenides I and 2 equiv. of DMSO (as an oxidant). All the reactions were performed without the exclusion of air and moisture at 100 0C for 10 min under microwave irradiation. Various substituents with different electronic and steric effects tolerated in the optimized reaction conditions. The developed methodology was shown to be robust and could easily be scaled-up without any significant loss of yield. The chemistry described herein represents a transition metal and solvent free method for the preparation of unsymmetrical diorganyl chalcogenides. We were also successful in scaling up the reaction in up to 10 mmol. The scope of this coupling methodology was extended by using potassium vinyltrifluoroborate IV as an alternative to boronic acid in these tellurylation and selenylation reactions by applying the optimal reaction parameters. The reaction of ditelluride and diselenide I proceeded smoothly and afforded the corresponding coupled products V in 87% and 89% isolated yield. Considering the importance of diorganyl chalcogenides, we developed a regioselective, rapid and greener iodine-catalyzed method for the synthesis of diorganyl chalcogenides through oxidative C Se/C S formation via direct C(sp2)-H bond cleavage using [O or N]-containing arenes. In this work, we reported the synthesis of unsymmetrical diorganyl chalcogenides VII via direct chalcogenation reactions between dichalcogenides I and various arenes VI catalyzed by 20 mol% of iodine in the presence of 3 equiv. of DMSO (as an oxidant). This regioselective methodology allowed us to obtain desired chalcogenated product in good to excellent yields under transition metal and solvent-free conditions, without the exclusion of air and moisture, applying microwave irradiations for 10 min. The reaction was also scaled-up to 10 mmol. Additionally, by this protocol, we were able to access biologically important Se/S containing heteroarenes, such as, pyrimidines, pyridines, thiazole. The versatility of the developed methodology was observed by using thiophenol VIII and sulfonyl hydrazides VIII as another sulfenylating agents and N,N-dimethylaniline IX, affording the desired sulfonated product X in very good yield, in a short reaction time using MW irradiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dhakal, Ram Chandra. „New Approaches To Heterocycle Synthesis: A Greener Route To Structurally Complex Protonated Azomethine Imines, And Their Use In 1,3-Dipolar Cycloadditions“. ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/777.

Der volle Inhalt der Quelle
Annotation:
1-Aza-2-azoniaallene salts are reactive intermediates that undergo [3+2] cycloaddition with many different types of multiple bonds. For the past several years, the Brewer group has studied the reactivity of these intermediates in intramolecular reactions, and have discovered that these cationic heteroallenes can react through a variety of other, mechanistically distinct, pathways to give different classes of nitrogen heterocycles. For example, prior work in the Brewer group revealed that 1-aza-2-azoniaallene salts could react in an intramolecular [4+2] cycloaddition reaction to give protonated azomethine imine salts containing a 1,2,3,4-tetrahydrocinnoline scaffold. Further study of the scope and limitations of this Diels-Alder-like reaction are described herein. These studies primarily focused on how varying the N-aryl ring and alkene substituents affected the reaction. We discovered that in several instances, the metal mediated reaction did not facilitate the cycloaddition very well, so we searched for alternative ways to facilitate the reaction. We discovered that a non-metallic Lewis acid (TMSOTf) provided very clean products with α-chloroazo compounds. I hypothesized that changing the leaving group adjacent to the azo might further improve the reaction. With this in mind, I developed a technique to prepare α-trifluoroacetoxyazo compounds by treating aryl hydrazones with trifluoroacetoxy dimethylsulfonium trifluoroacetate. This technique is compatible with all types of functional groups including nitro aryl compounds, which gave low yields of the corresponding chloroazo derivatives. Importantly, these α-trifluoroacetoxyazo compounds gave even better cycloaddition results when treated with TMSOTf, and this method is more practical, more environmentally friendly, and greener than the metal mediated technique. This process even returned sterically hindered products in high yield, and provide a dearomatized non-protonated azomethine imine salt, which further verified the proposed mechanism of the [4+2] cycloaddition. Azomethine imines are well known to undergo 1,3-dipolar cycloadditions with alkenes. We wondered if the protonated azomethine imine salts generated by the [4+2] cycloaddition could be used in a subsequent base-mediated [3+2] cycloaddition to generate structurally complex tetra- or pentacyclic products. We were pleased to find that the protonated azomethine imines indeed reacted smoothly with a variety of π-system in the presence of triethylamine to give the corresponding cycloadducts in high yields with moderate to high diastereoselectivities. In an attempt to understand the diastereoselectivity of these [3+2] cycloadditions better, I modeled them computationally.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sharma, Prawin Kumar. „Greener approach to the synthesis of some novel class of isoxazolidine and isoxazoline derivatives using N-methyl and N-phenyl-a-chloro nitrones“. Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/1884.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Greener synthesis"

1

Nag, Ahindra. Greener Synthesis of Organic Compounds, Drugs and Natural Products. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wuts, Peter G. M., Hrsg. Greene's Protective Groups in Organic Synthesis. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118905074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Patti, Angela. Green Approaches To Asymmetric Catalytic Synthesis. Dordrecht: Angela Patti, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Koichi, Mikami, Hrsg. Green reaction media in organic synthesis. Oxford: Blackwell Pub., 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mittal, Vikas. Renewable polymers: Synthesis, processing, and technology. Hoboken, N.J: John Wiley & Sons, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1962-, Anastas Paul T., Bartlett Laurence und Williamson Tracy C. 1963-, Hrsg. Green chemical syntheses and processes. Washington, D.C: American Chemical Society, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Roberto, Ballini, Hrsg. Eco-friendly synthesis of fine chemicals. Cambridge, UK: RSC Pub., 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Micro- and nanostructured polymer systems: From synthesis to applications. Toronto: Apple Academic Press, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhang, Wei, und Berkeley W. Cue. Green techniques for organic synthesis and medicinal chemistry. Chichester, West Sussex: John Wiley & Sons, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Instilling religion in Greek and Turkish Nationalism: A "sacred synthesis". New York: Palgrave Macmillan, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Greener synthesis"

1

Studzińska, Renata, Renata Kołodziejska und Daria Kupczyk. „Greener Synthesis of Potential Drugs“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 195–227. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kołodziejska, Renata, Renata Studzińska, Hanna Pawluk und Alina Woźniak. „Greener Synthesis of Natural Products“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 241–87. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Oldenhuis, Nathan J., Aaron M. Whittaker und Vy M. Dong. „Greener Methods for Amide Bond Synthesis“. In Methods in Pharmacology and Toxicology, 35–96. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-0716-1579-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Matsubara, Hiroshi, Takuji Kawamoto und Ilhyong Ryu. „CHAPTER 11. Challenges of Using Fluorous Solvents for Greener Organic Synthesis“. In Sustainable Organic Synthesis, 313–38. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164842-00313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Patil, Aniruddha B., und Bhalchandra M. Bhanage. „Sonochemistry: A Greener Protocol for Nanoparticles Synthesis“. In Handbook of Nanoparticles, 143–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15338-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Patil, Aniruddha B., und Bhalchandra M. Bhanage. „Sonochemistry: A Greener Protocol for Nanoparticles Synthesis“. In Handbook of Nanoparticles, 1–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13188-7_4-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Miller, Roland M., Francis J. Osonga und Omowunmi A. Sadik. „Synthesis and Biological Applications of Greener Nanoparticles“. In Interfaces Between Nanomaterials and Microbes, 247–68. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021. | “A science publishers book.”: CRC Press, 2021. http://dx.doi.org/10.1201/9780429321269-11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Acosta-Guzmán, Paola, und Diego Gamba-Sánchez. „Greener Methods for Halogenation of Aromatic Compounds“. In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 41–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eksiler, Kubra, Yoshito Andou und Tessei Kawano. „Chapter 11. Fabrication of Biodegradable Cellulose Composite Through a Greener Reaction Process“. In Cellulose Nanoparticles : Synthesis and Manufacturing, 236–57. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019545-00236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Villaseñor-Basulto, Déborah L., Mary-Magdalene Pedavoah und Eric R. Bandala. „Plant Materials for the Synthesis of Nanomaterials: Greener Sources“. In Handbook of Ecomaterials, 1–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_88-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Greener synthesis"

1

Monteiro, J. L., A. F. Torre, M. P. Paixão und A. G. Corrêa. „Asymmetric synthesis of pyranocumarins under greener conditions“. In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013101414540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de la Torre, Beatriz G., Ashish Kumar, Yahya Jad, Jonathan M. Collins, Simona Serban, Othman Almusaim und Fernando Albericio. „Solid-phase peptide synthesis: the Greener, the Better“. In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Feu, Karla S., Anna M. Deobald, Arlene G. Corrêa und Marcio W. Paixão. „Tandem Organocatalytic Functionalization and Fisher Indole Synthesis: A Greener Approach for the Synthesis of Indoles“. In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0342-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumari, Sonam, Renu Sharma und Ruchi Bharti. „ZnO nanoparticles: A promosing greener catalytic approach for synthesis of bioactive heterocycles“. In INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gupta, Girish Kumar, Vinod Kumar und Vipin Saini. „Greener synthesis and DNA photocleavage activity of 1, 5-Diaryl-3-trifluoromethylpyrazole derivatives“. In The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-04827.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Onyenkeadi, Victor, Suela Kellici und Basu Saha. „Greener Synthesis of 1,2-Butylene Carbonate from CO2 Using Graphene-Inorganic Nanocomposite Catalysis“. In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-052-3.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Arya, Kapil, Diwan Rawat und Pooja Gusain. „Greener One Pot Synthesis of 2-Amino-4-arylquinoline-3-carbonitriles in Neat Water Under Microwaves“. In The 16th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/ecsoc-16-01061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Agarwal, Shikha, Dinesh Kr Agarwal, Priyanka Kalal und Divyani Gandhi. „A comparative study: Greener vs conventional synthesis of 4H-pyrimido[2,1-b]benzothiazoles via Biginelli reaction“. In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Greener Synthesis of Chitosan/Acrylic Acid (AA) Hydrogel and Its Application as Drying Agent for Organic Solvents and Crude Oil Fractions“. In June 29-30, 2017 London (UK). DiRPUB, 2017. http://dx.doi.org/10.15242/dirpub.c0617017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vieira, Lucas Campos Curcino, und Arlene G. Corrêa. „Green synthesis of chalcone derivatives via Suzuki coupling“. In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0238-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Greener synthesis"

1

Saffron, Christopher, und John W. Frost. Large Scale Green Synthesis of 1,2,4-Butanetriol. Fort Belvoir, VA: Defense Technical Information Center, März 2007. http://dx.doi.org/10.21236/ada466203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Frost, John W. Green Synthesis of D-1,2,4 - Butantetroil from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada593490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Frost, John W. Green Synthesis of D-1,2,4-Butanetriol from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2009. http://dx.doi.org/10.21236/ada548856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Frost, John W. Green Synthesis of D-1,2,4-Butanetriol from D-Glucose. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada548871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Frost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada593488.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Frost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada548823.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Frost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada548824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Frost, John W. Green Synthesis of Phloroglucinol: Exploiting Pseudomonas fluorescens and Scale-Up. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2009. http://dx.doi.org/10.21236/ada548825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pindwal, Aradhana. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1342556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rahmathullah, Azmathullah. Green synthesis of Solanum xanthocarpum mediated selenium nanoparticles and its biomedical applications. Peeref, November 2022. http://dx.doi.org/10.54985/peeref.2211p7161250.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie