Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Green water“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Green water" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Green water"
López. „Green Water“. Fairy Tale Review 16 (2020): 51. http://dx.doi.org/10.13110/fairtalerevi.16.1.0051.
Der volle Inhalt der QuelleBagwan, Nurjaha, Pradnya Kushire und Manasi Deshpande Priyanka Singh Prof Shyam Gupta. „IoT based water saving technique for Green Farming“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 1492–95. http://dx.doi.org/10.31142/ijtsrd14435.
Der volle Inhalt der QuelleKim, Yong Jig, Ki-Seok Shin, Seung-Chul Lee, Youngrok Ha und Sa Young Hong. „Computation of the Bow Deck Design Pressure against the Green Water Impact“. Journal of the Society of Naval Architects of Korea 56, Nr. 4 (20.08.2019): 343–51. http://dx.doi.org/10.3744/snak.2019.56.4.343.
Der volle Inhalt der QuelleZhou, Haihua, Yunxia Liu und Yanlin Song. „Water Based Green Lithography“. NIP & Digital Fabrication Conference 2018, Nr. 1 (23.09.2018): 57–60. http://dx.doi.org/10.2352/issn.2169-4451.2018.34.57.
Der volle Inhalt der QuelleGyuricza, Csaba, Ákos Tarnawa und Márton Jolánkai. „„Green water” – „Zöld víz”“. Agrokémia és Talajtan 61, Nr. 1 (01.06.2012): 235–36. http://dx.doi.org/10.1556/agrokem.60.2012.1.17.
Der volle Inhalt der QuelleLow, Denise, und Thomas King. „Green Grass, Running Water“. American Indian Quarterly 18, Nr. 1 (1994): 104. http://dx.doi.org/10.2307/1185744.
Der volle Inhalt der QuelleBerner, Robert L., und Thomas King. „Green Grass, Running Water“. World Literature Today 67, Nr. 4 (1993): 869. http://dx.doi.org/10.2307/40149762.
Der volle Inhalt der QuellePennisi, E. „Water Reclamation Going Green“. Science 337, Nr. 6095 (09.08.2012): 674–76. http://dx.doi.org/10.1126/science.337.6095.674.
Der volle Inhalt der QuelleVarner, John S. „Green Medicine, Muddy Water“. Journal of Alternative and Complementary Medicine 7, Nr. 4 (August 2001): 361–70. http://dx.doi.org/10.1089/107555301750463242.
Der volle Inhalt der QuelleKlossek, Michael L., Julien Marcus, Didier Touraud und Werner Kunz. „Highly water dilutable green microemulsions“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 442 (Februar 2014): 105–10. http://dx.doi.org/10.1016/j.colsurfa.2012.12.061.
Der volle Inhalt der QuelleDissertationen zum Thema "Green water"
Han, Juchull. „Impact of green water on FPSOs“. Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275418.
Der volle Inhalt der QuelleGreco, Marilena. „A Two-Dimensional Study of Green-Water Loading“. Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-524.
Der volle Inhalt der QuelleLarge relative motions between the ship and the water may cause water shipping on the main deck. In this thesis, the fundamental features of water-on-deck phenomena are in vestigated, together with the "green" water loading on a deck house in the bow region. The studies are relevant for a stationary ship like a FPSO in head sea waves.
Potential flow theory is used to study numerically a nonlinear two-dimensional problem in a plane containing the ship's centerplane. The developed model is verified by various test cases, and validated by published as well as new experimental data.
The influence of wave parameters, ship motions and hull geometry is investigated. Relevance of three-dimensional effects is discussed.
Dedicated two-dimensional model tests have been performed, both to elucidate the fluid mechanics involved in the water shipping and to validate the numerical method. It is found that the water shipping starts in the form of a plunging wave hitting the deck. This could cause structural damages. Most often, the plunging is localized in the bow region and do not affect the main flow at a later stage. In a few cases, larger masses of water bluntly impacting with the deck have been observed. The latter is consistent with seldom observations reported in 3-D experiments, with large and steep waves plunging directly onto the deck. More often the water flow along the deck resembles the one subsequent to a dam breaking. Both types of events are investigated numerically. The impact pressures on a vertical wall in the bow area are measured and compare well with the boundary element method.
The reliability of a dam-breaking model and shallow-water approximation to study the propagation of water on the deck is examined. The former can only qualitatively describe the flow evolution.The latter can in principle be used but needs information from the exterior flow and, thus, the solution of the complete ship-waveinteraction problem.
Water impacts with a deck house in the bow area are studied in details. Use of a similarity solution for a water wedge hitting a rigid wall at 90º is compared with the fully numerical solution. The method predicts correctly the first stages of the impact with a smaller computational effort. Inuence of local flow conditions and wall slope on hydrodynamic loads is discussed. Importance of hydroelasticity is investigated in case of realistic structural parameters for the deck house. This shows a limited role of structural deformations in determining the maximum loads.
Pham, Xuan Phuc. „Green water and loading on high speed containerships“. Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/249/.
Der volle Inhalt der QuellePh.D. thesis submitted to the Department of Naval Architecture and Marine Engineering, Faculty of Engineering, University of Glasgow, 2008. Includes bibliographical references. Print copy also available.
Abel, Heiko. „Frigate defense effectiveness in asymmetrical green water engagements“. Thesis, Monterey, California : Naval Postgraduate School, 2009. http://handle.dtic.mil/100.2/ADA508855.
Der volle Inhalt der QuelleThesis Advisor(s): Sanchez, Paul J. ; Second Reader: Kline, Jeffrey E. "September 2009." Author(s) subject terms: Agent Based Simulation, Asymmetric Warfare, Data Farming, Design of Experiments, Evolving Design, MANA, Modeling and Simulation, Naval Swarm Defense, Robust Design, Regression Analysis, Simulation Experiments and Efficient Design Center, Taguchi Method Description based on title screen as viewed on November 03, 2009. DTIC Descriptor (s): Frigates, Theater Level Operations, Defense Systems, Experimental Design, Confined Environments, Asymmetry, Statistical Analysis, Sea Water, Small Ships, Threats, Survivability, Weapons, Theses DTIC Identifier (s): SSTR (Stability Security Transition and Reconstruction), Asymmetric Warfare, Mana Includes bibliographical references (p. 125-132). Also available in print.
Joustra, Caryssa. „An Integrated Building Water Management Model for Green Building“. Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3654.
Der volle Inhalt der QuelleSchuchman, Rachel. „Storm Water Retention of Native and Sedum Green Roofs“. Thesis, Southern Illinois University at Edwardsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111534.
Der volle Inhalt der QuelleGreen roofs are an established best management practice (BMP) for storm water mitigation because of their ability to retain precipitation runoff. The purpose of this study was to quantify storm water retention of Sedum and native plant green roof systems at three substrate depths (10, 15, 20 cm). Survival of plants on green roof systems is dependent on how quickly they can establish themselves. This study also determined native and Sedum plant roof surface coverage at three green roof growth media depths (10, 15, 20 cm). A mixture of six Sedum species (S. spurium, S. sexangulare, S. album, S. Immergrunchen, S. kamtschaticum, and S. reflexum) and four native species (Sporolus cryplandrus, Boutelous curtipendula, B. gracilis , and Penstamen pallidus) were planted into the built-in-place systems (BIPs) on June 20, 2014.
There were 137 precipitation events totaling to 158.2 cm during the entire (June 20, 2014-June 30, 2015) study period and there were 87 precipitation events with a total precipitation of 108.1 cm during storm water collection (Oct. 31, 2015 until June 30, 2015). During the study period, mean storm water retention of green roof systems planted with native (>58%) and Sedum (>53%) species were identical regardless of growth media depth. Mean storm water retention in green roof systems planted with native and Sedum species in all growth media depths were greater than mean storm water retention of non-vegetated roof models (32%).
Green roof plant surface coverage plays an important role in water retention of storm water runoff. During the dormant period (January 23, 2015), roof coverage by Sedum plants was greater than roof coverage by native plants. In addition, green roof surface coverage by Sedum plants was the same regardless of depth (>89%). Green roof surface coverage of native plants in 10 cm depth achieved less coverage than native plants in 15 and 20 cm depths. These results differ from the plant-growing season (June 30, 2015). Green roof surface coverage by native plants in green roof systems with 15 and 20 cm growth media depth were identical to the roof coverage by Sedum plants in green roof systems with 10, 15, or 20 growth media depth. Green roof surface coverage by native plants in green roof systems with 10 cm growth media depth was less than the roof coverage in all green roof systems in this study.
Analysis of covariance was used to determine if green roof surface coverage by native and Sedum plants affected mean storm water retention. During the study period green roof surface coverage by native and Sedum plants did not affect storm water retention regardless of growth media depth.
This green roof research demonstrates that green roof systems planted with native plant species are effective tools for retaining storm water in the mid-western region of the United States. After 9 months, there was no difference in storm water retention between native and Sedum species planted in 10, 15, and 20 cm growth media depth. Each green roof module retained more storm water than the traditional, non-vegetated roof model. Both native and Sedum species planted on green roofs in 10, 15, and 20 cm media depth achieved more than 69 percent green roof surface coverage after nine months.
Eriksson, Anders Olof. „Water Runoff Properties for Expanded Clay LWA in Green Roofs“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23326.
Der volle Inhalt der QuelleBeauchamp, Pierre. „Water-centric approach to developing green infrastructure (framework and cost)“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123225.
Der volle Inhalt der QuelleWATER-CENTRIC APPROACH TO DEVELOPING GREEN INFRASTRUCTURE: Framework and CostPierre Beauchamp, ing. 15 avril 2014RésuméLe thème des infrastructures vertes (GI) est devenu un terme de référence dans la planification du développement des projets. Toutefois, les approches intégrées pour aider les organisations d'ingénierie dans la planification de la mise en place de nouveaux projets verts sont largement absents de la littérature, en particulier dans le contexte du développement durable. La présente étude vise à combler cette lacune en développant et en proposant une approche axée sur le développement d'une structure de démarrage des projets verts, et en tenant compte du drainage, de l'approvisionnement en eau et du traitement des eaux-usées.Le premier objectif de la présente étude est d'explorer l'utilisation des infrastructures vertes pleinement intégrées dans la conception technique d'un développement durable et dans le contexte d'un développement biophile d'une ville. Pour supporter un travail d'équipe, l'élaboration d'une séquence claire des tâches à exécuter a été nécessaire. Une revue de la littérature a conduit à l'identification de plusieurs approches différentes, à partir de laquelle quatre propositions ont été retenues. De là une approche améliorée, a été conçue pour définir les tâches séquentielles permettant de démarrer un projet vert. Ces tâches comprennent toutes les composantes de la gestion de l'eau (drainage, approvisionnement en eau et eaux-usées). Une étude de cas en Chine a permis de vérifier l'acuité de cette approche. Cette étude a permis de démontrer que toutes les composantes de l'infrastructure verte pourraient être intégrées dans un nouveau projet de développement. Cette approche est nettement centrée sur l'eau.Pour satisfaire un deuxième objectif de l'étude, la nouvelle approche proposée a été utilisée pour comparer, dans le cadre d'une étude de faisabilité, les avantages économiques d'un investissement vert avec celle d'une conception classique, pour l'élaboration du concept d'un nouveau pôle institutionnel de la ville de Vaudreuil- Dorion PQ, Canada. Bien que l'étude ait montré que le coût de construction des projets verts était plus élevé, il a été constaté que sur un cycle de vie les infrastructures vertes peuvent entrainer des économies d'entretien. Les infrastructures vertes peuvent apporter des avantages économiques importants pour les villes.L'étude a démontré que les coûts d'immobilisation des infrastructures vertes étaient de 15% supérieures à comparer à des infrastructures conventionnelles sur la base d'une unité de logement. Par contre, l'étude a également démontré que la valeur de chaque unité d'habitation serait de 15 à 27 pour cent plus élevée dans un quartier vert plutôt que dans un quartier de conception conventionnelle. Cela permet une augmentation équivalente des recettes fiscales pour une municipalité.Bien que de nombreuses approches ont été identifiées, peu d'entre elles permettre de démarrer un projet d'ingénierie biophile. Cette étude a permis d'élaborer une nouvelle approche intégrée pour la mise en place d'infrastructures vertes qui tient compte de la place de l'eau dans le développement.
Yu, Kai. „Level-set RANS method for sloshing and green water simulations“. [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2097.
Der volle Inhalt der QuelleWaern, Sandra. „Microalgae : A Green Purification of Reject Water for Biogas Production“. Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-135549.
Der volle Inhalt der QuelleBücher zum Thema "Green water"
Gallant, Mavis. Green water, green sky. London: Bloomsbury Pub., 1995.
Den vollen Inhalt der Quelle findenGreen grass, running water. Toronto: HarperCollins Publishers, 1993.
Den vollen Inhalt der Quelle findenThomas, King. Green grass, running water. Toronto: HarperCollins Publishers, 1994.
Den vollen Inhalt der Quelle findenBlue water, green skipper. New York: G. P. Putnam's Sons, 2012.
Den vollen Inhalt der Quelle findenGreen grass, running water. Boston: Houghton Mifflin, 1993.
Den vollen Inhalt der Quelle findenGreen grass, running water. Toronto: HarperPerennial Canada, 1999.
Den vollen Inhalt der Quelle findenGreen grass, running water. New York: Bantam Books, 1994.
Den vollen Inhalt der Quelle findenThomas, King. Green grass, running water. Toronto: HarperCollins Publishers, 1993.
Den vollen Inhalt der Quelle findenStates West Water Resources Corporation. Green River Basin water planning process. [Cheyenne, Wyo.]: The Corporation, 2001.
Den vollen Inhalt der Quelle findenillustrator, Yang HyeWon, Hrsg. Green River. Chicago, Illinois: Norwood House Press, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Green water"
Pai, R., und D. J. Hargreaves. „Water Lubricated Bearings“. In Green Tribology, 347–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23681-5_13.
Der volle Inhalt der QuelleLi, Xiaoxi. „Water Pollution and Treatment—Nostalgia for Ancient Water Civilization“. In Green Civilization, 151–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7812-0_8.
Der volle Inhalt der QuelleBrauman, Kate A., Rebecca Benner, Silvia Benitez, Leah Bremer und Kari Vigerstøl. „Water Funds“. In Green Growth That Works, 118–40. Washington, DC: Island Press/Center for Resource Economics, 2019. http://dx.doi.org/10.5822/978-1-64283-004-0_9.
Der volle Inhalt der QuelleClifford, Anthony A. „Separations Using Superheated Water“. In Green Separation Processes, 323–39. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606602.ch3h.
Der volle Inhalt der QuelleHarry, Nissy Ann, K. R. Rohit und Gopinathan Anilkumar. „Organic Reactions in Water“. In Green Organic Reactions, 33–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6897-2_3.
Der volle Inhalt der QuelleRoth, Hannah Rae, Meghan Lewis und Liane Hancock. „Water Use“. In The Green Building Materials Manual, 73–88. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64888-6_6.
Der volle Inhalt der QuelleStaykov, Aleksandar, Stephen M. Lyth und Motonori Watanabe. „Photocatalytic Water Splitting“. In Green Energy and Technology, 159–74. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_12.
Der volle Inhalt der QuelleIto, Kohei, Hua Li und Yan Ming Hao. „Alkaline Water Electrolysis“. In Green Energy and Technology, 137–42. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_9.
Der volle Inhalt der QuelleLambrinos, John G. „Water Through Green Roofs“. In Ecological Studies, 81–105. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14983-7_4.
Der volle Inhalt der Quelle(Stathis) Michaelides, Efstathios E. „Power from the Water“. In Green Energy and Technology, 313–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20951-2_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Green water"
Dahme, Joanne. „Clean Water — Green City“. In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)322.
Der volle Inhalt der QuelleArtita, K. S., R. Rajan und J. Knighton. „Seeing Green by Going Green: Maximizing Ecosystem/Community Services Benefits through Strategic Green Storm-Water Infrastructure Design“. In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.055.
Der volle Inhalt der QuelleFitzmorris, Alan J. „Solar Domestic Water Heating Technology: Market Barriers and Adoption Strategies“. In 2010 IEEE Green Technologies Conference (IEEE-Green-2010). IEEE, 2010. http://dx.doi.org/10.1109/green.2010.5453779.
Der volle Inhalt der QuelleHeffernan, Taylor, Stephen White, Tyler Krechmer, Nicholas Manna, Chris Bergerson, Mira Olsen und Jay Cruz. „Green Stormwater Infrastructure Monitoring of Philadelphia’s Green City, Clean Waters Program“. In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479889.013.
Der volle Inhalt der QuelleGibler, M. R. „Comprehensive Benefits of Green Roofs“. In World Environmental and Water Resources Congress 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479162.221.
Der volle Inhalt der QuelleVenkatesan, Rajesh, Karthik Dampuri, Rajab Challoo und Aasha Shankar. „Green Power Production from Pinnata“. In World Environmental and Water Resources Congress 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480595.022.
Der volle Inhalt der QuelleBesancon, Richard E. „Green Alternatives to Channel Stabilization“. In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)574.
Der volle Inhalt der QuelleWelsh, J. T., und P. Mooney. „The St George Rainway: building community resilience with green infrastructure“. In URBAN WATER 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/uw140251.
Der volle Inhalt der QuelleSchlaman, James C., Bryce Lawrence und Scott Schulte. „From Grey to Green: Strategies and Concepts for Implementing Green CSO and Wet Weather Solutions“. In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)114.
Der volle Inhalt der QuelleElmore, Andrew Curtis, Cecilia Elmore, Erica Collins, John Conroy, Cristiane Q. Surbeck und Jeff Cawlfield. „Girls Go Green, Girls Go Global!“ In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.065.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Green water"
Research Institute (IFPRI), International Food Policy. Blue and green virtual water flows. Washington, DC: International Food Policy Research Institute, 2014. http://dx.doi.org/10.2499/9780896298460_20.
Der volle Inhalt der QuelleAllen, John L., Jane E. Gofus und Jeffery R. Meinertz. Analytical Methods for Malachite Green : Completion Report : Malachite Green Analysis in Water. Office of Scientific and Technical Information (OSTI), Juni 1991. http://dx.doi.org/10.2172/6274687.
Der volle Inhalt der QuelleResearch Institute (IFPRI), International Food Policy. Blue and green water use by irrigated crops. Washington, DC: International Food Policy Research Institute, 2014. http://dx.doi.org/10.2499/9780896298460_21.
Der volle Inhalt der QuellePennington, B. I., J. E. Dyer, J. D. Lomax und M. D. Deo. Green River Formation water flood demonstration project. Final report. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/418399.
Der volle Inhalt der QuellePapusch, R. UMTRA water sampling and analysis plan, Green River, Utah. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10112399.
Der volle Inhalt der QuelleLomax, J., D. Nielson und M. Deo. Green River Basin Formation water flood demonstration project, Uinta Basin, Utah. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6745948.
Der volle Inhalt der QuelleBrainard, James, und Amy Coplen. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/1141803.
Der volle Inhalt der QuelleOh, M. S. Mechanism of low-temperature water evolution from Green River Formation oil shale. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6211042.
Der volle Inhalt der QuelleDavidson, Kristiane, Nabilla Gunawan, Julia Ambrosano und Leisa Souza. Green Infrastructure Investment Opportunities: Brazil 2019. Inter-American Development Bank, August 2020. http://dx.doi.org/10.18235/0002638.
Der volle Inhalt der QuelleDubey, Manvendra, Harrison Parket, Katherine Myers, Thom Rahn, B. Christoffersson, Debra Wunch und Paul Wennberg. Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1302243.
Der volle Inhalt der Quelle