Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gravity waves“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gravity waves" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gravity waves"
Naciri, Mamoun, und Chiang C. Mei. „Evolution of short gravity waves on long gravity waves“. Physics of Fluids A: Fluid Dynamics 5, Nr. 8 (August 1993): 1869–78. http://dx.doi.org/10.1063/1.858812.
Der volle Inhalt der QuelleDias, Frédéric, und Christian Kharif. „NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES“. Annual Review of Fluid Mechanics 31, Nr. 1 (Januar 1999): 301–46. http://dx.doi.org/10.1146/annurev.fluid.31.1.301.
Der volle Inhalt der QuelleAkers, Benjamin F., David M. Ambrose und J. Douglas Wright. „Gravity perturbed Crapper waves“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, Nr. 2161 (08.01.2014): 20130526. http://dx.doi.org/10.1098/rspa.2013.0526.
Der volle Inhalt der QuelleBeya, Jose, William Peirson und Michael Banner. „ATTENUATION OF GRAVITY WAVES BY TURBULENCE“. Coastal Engineering Proceedings 1, Nr. 32 (02.02.2011): 3. http://dx.doi.org/10.9753/icce.v32.waves.3.
Der volle Inhalt der QuelleKenyon, Kern E. „Frictionless Surface Gravity Waves“. Natural Science 12, Nr. 04 (2020): 199–201. http://dx.doi.org/10.4236/ns.2020.124017.
Der volle Inhalt der QuelleSUN, TIEN-YU, und KAI-HUI CHEN. „ON INTERNAL GRAVITY WAVES“. Tamkang Journal of Mathematics 29, Nr. 4 (01.12.1998): 249–69. http://dx.doi.org/10.5556/j.tkjm.29.1998.4254.
Der volle Inhalt der QuelleVikulin, A. V., A. A. Dolgaya und S. A. Vikulina. „Geodynamic waves and gravity“. Geodynamics & Tectonophysics 5, Nr. 1 (2014): 291–303. http://dx.doi.org/10.5800/gt-2014-5-1-0128.
Der volle Inhalt der QuelleLonguet-Higgins, M. S. „Bifurcation in gravity waves“. Journal of Fluid Mechanics 151, Nr. -1 (Februar 1985): 457. http://dx.doi.org/10.1017/s0022112085001057.
Der volle Inhalt der QuellePizzo, Nick E. „Surfing surface gravity waves“. Journal of Fluid Mechanics 823 (16.06.2017): 316–28. http://dx.doi.org/10.1017/jfm.2017.314.
Der volle Inhalt der QuelleSTENFLO, L., und P. K. SHUKLA. „Nonlinear acoustic–gravity waves“. Journal of Plasma Physics 75, Nr. 6 (11.03.2009): 841–47. http://dx.doi.org/10.1017/s0022377809007892.
Der volle Inhalt der QuelleDissertationen zum Thema "Gravity waves"
Popat, Nilesh R. „Steep capillary waves on gravity waves“. Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/78695ee9-b923-4374-b70c-6589b4215241.
Der volle Inhalt der QuelleLeaman, Nye Abigail. „Scattering of internal gravity waves“. Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/238679.
Der volle Inhalt der QuelleHalliday, Oliver John. „Atmospheric convection and gravity waves“. Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22414/.
Der volle Inhalt der QuelleDoherty, Mary Jane. „Focal lengths and gravity waves“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/73280.
Der volle Inhalt der QuelleMICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.
Transferred to 1/2 in VHS videotape from 8 mm film.
Includes bibliographical references (leaves 56-57).
Film is composed of tiny photographs which, when projected, sometimes look very much like people and things in the real world. Film, too, cannot be separated from its tools. Aesthetic criticism was, and still is, weighted towards consideration of the life-like tiny photographs. This thesis traces the evolution of film technology in order to establish the point where non- fiction ideology (aesthetics) lost pace with technical innovation - a derailment, so to speak, with nefarious implications for the present-day filmmaker. The emphasis is on lenses - the provocative "camera eye" - and sound recording equipment - which proved to be the rate-limiter of technical advance. This thesis considers two filmmaking solutions to the present malaise; the Standard TV Documentary, and the single-person shooting methodology of former MIT filmmakers, Jeff Kreines and Joel DeMott - both of which, in turn , will be compared to my own response - in the form of a movie, Gravity, which is about the members of an MIT experimental astrophysics laboratory trying to discover gravity waves. A videotape copy of the movie. is included with the thesis paper.
by Mary Jane Doherty.
M.S.V.S.
Mantke, Wolfgang. „Spin and gravity“. Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27605.
Der volle Inhalt der QuelleGibson-Wilde, Dorothy E. „Atmospheric gravity waves in constituent distributions /“. Title page, abstract and contents only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phg4516.pdf.
Der volle Inhalt der QuelleMeza, Valle Claudio Alejandro. „Early detection of extreme waves by acoustic gravity-waves“. Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/171084.
Der volle Inhalt der QuelleExtreme waves generated in the ocean are of high importance because various maritime structures in the world, including ships, are confronted to this type of wave events, both in deep waters and in coastal areas. Some extreme waves correspond to wave phenomena generated in an atypical way in the ocean, also called monster waves, freak waves, rogue waves, extreme waves, solitons etc., since their generation differs from the common waves generated by wind. Assuming a slightly compressible ocean, the generation and analysis of acoustic-gravity waves (AGW or acoustic waves) in the ocean have been the subject of study for some time, because from them it is possible to obtain some information from the gravity wave, in this case a extreme wave that have generated them, and also to know other kind of phenomena induced by these AGW, as is the case of the bottom pressure. In the present work, a mathematical model has been developed which represents the generation and propagation of an extreme wave represented by a pressure change in the surface of the ocean considering compressible fluid, from which the generation and propagation of acoustic waves is induced. Since sound travels at a speed of 1500 m/s in the ocean, these waves arrive first at any observation point, allowing early detection of the extreme wave from the pressure in the oceanic bottom due to propagation of the acoustic wave. The theoretical development and two-dimensional numerical simulations are presented in the document. The implementation of this methodology and its results is relevant in the field of civil and maritime engineering in Chile since its high potential in coastal zones, due to the fact that for some years, the frequency of extreme wave events has been seen increased, and having an alternative detection system for extreme wave events can become a relevant factor in coastal management and natural disasters services. It is important to mention that this type of work has not been developed previously in Chile.
proyectos Centros de Excelencia Basal Conicyt PIA AFB 170001 CMM & UMI-CNRS 2807 y Fondecyt Regular 1171854
Horne, Iribarne Ernesto. „Transport properties of internal gravity waves“. Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1027/document.
Der volle Inhalt der QuelleInternal waves are produced as a consequence of the dynamic balance between buoyancy and gravity forces when a particle of fluid is vertically displaced in a stably stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves propagation. Furthermore, these two environments stock a vast amount of particles at their boundaries and in their bulk. Therefore, internal waves and particles will inexorably interact in these systems. In this work, exploratory experiments are performed to study wave generated erosive transport of particles. In order to determine a transport threshold, the peculiar properties of internal waves (“critical reflection”) are employed to increase the intensity of the wave field at the boundaries. A method was developed in collaboration with a signal processing team to improve the determination of the wave components involved in near-critical reflection. This method enabled us to compare our experimental results with a theory of critical reflection, showing good agreement and allowing to extrapolate these results to experiments beyond ours and to oceanic conditions. In addition, we study the interaction of internal waves with a column of particles in sedimentation. Two main effects are observed: the column oscillates around an equilibrium position, and it is displaced as a whole. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift of the waves. This effect could also explain the frequency dependence of the displacement
Eckermann, Stephen D. „Atmospheric gravity waves : obsevations and theory /“. Title page, table of contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09phe1862.pdf.
Der volle Inhalt der QuelleCopies of author's previously published articles inserted. Includes bibliographical references (leaves 261-288).
Yan, Xiuping. „Satellite observations of atmospheric gravity waves“. Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/7979.
Der volle Inhalt der QuelleBücher zum Thema "Gravity waves"
Dastidar, Pranab R. Magneto-gravity. Mumbai: P.R. Dastidar, 2006.
Den vollen Inhalt der Quelle findenA, Datta, Sharman R. D und Dryden Flight Research Facility, Hrsg. Lee waves: Benign and malignant. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Facility, 1993.
Den vollen Inhalt der Quelle findenAgnon, Yehuda. Nonlinear diffraction of ocean gravity waves. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1986.
Den vollen Inhalt der Quelle findenWilliams, JohnM. Tables of progressive gravity waves. Boston (Mass.): Pitman Advanced Publishing Program, 1985.
Den vollen Inhalt der Quelle findenVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenN, Hunt J., Hrsg. Gravity waves in water of finite depth. Southampton: Computational Mechanics Publications, 1997.
Den vollen Inhalt der Quelle findenVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenKeeley, J. R. SAR sensitivities to surface gravity waves. Ottawa: Department of Fisheries and Oceans, 1992.
Den vollen Inhalt der Quelle findenK, Dutt P., und Langley Research Center, Hrsg. Acoustic gravity waves: A computational approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Den vollen Inhalt der Quelle findenRabinovich, A. B. Dlinnye gravitat͡s︡ionnye volny v okeane: Zakhvat, resonans, izluchenie. Sankt-Peterburg: Gidrometeoizdat, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gravity waves"
Olbers, Dirk, Jürgen Willebrand und Carsten Eden. „Gravity Waves“. In Ocean Dynamics, 179–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_7.
Der volle Inhalt der QuelleHooke, William H. „Gravity Waves“. In Mesoscale Meteorology and Forecasting, 272–88. Boston, MA: American Meteorological Society, 1986. http://dx.doi.org/10.1007/978-1-935704-20-1_12.
Der volle Inhalt der QuelleManasseh, Richard. „Internal gravity waves“. In Fluid Waves, 119–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429295263-5.
Der volle Inhalt der QuellePărău, Emilian I., und Jean-Marc Vanden-Broeck. „Gravity-Capillary and Flexural-Gravity Solitary Waves“. In Nonlinear Water Waves, 183–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33536-6_11.
Der volle Inhalt der QuelleHogan, Peter A., und Dirk Puetzfeld. „‘Spherical’ Gravity Waves“. In SpringerBriefs in Physics, 23–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_4.
Der volle Inhalt der QuellePedlosky, Joseph. „Internal Gravity Waves“. In Waves in the Ocean and Atmosphere, 59–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_7.
Der volle Inhalt der QuelleSakellariadou, Mairi. „Gravitational Waves“. In Modified Gravity and Cosmology, 375–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83715-0_25.
Der volle Inhalt der QuelleMaeder, André. „Transport by Gravity Waves“. In Physics, Formation and Evolution of Rotating Stars, 449–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76949-1_17.
Der volle Inhalt der QuelleMiles, Alan J., und B. Roberts. „Magnetoacoustic-Gravity Surface Waves“. In Mechanisms of Chromospheric and Coronal Heating, 508–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_84.
Der volle Inhalt der QuelleHogan, Peter A., und Dirk Puetzfeld. „Plane Fronted Gravity Waves“. In SpringerBriefs in Physics, 9–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gravity waves"
AYON-BEATO, ELOY, GASTON GIRIBET und MOKHTAR HASSAINE. „CRITICAL GRAVITY WAVES“. In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0085.
Der volle Inhalt der QuelleMochimaru, Yoshihiro. „Gravity-capillary, solitary waves“. In RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127488.
Der volle Inhalt der QuelleRusso, Pedro, Pedro Oliveira, Catarina Sá-Dantas, Filipe Correia und Vasco Almeida. „Faraday Waves Zero Gravity Experiment“. In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-a2.p.04.
Der volle Inhalt der QuelleShafi, Qaisar. „Will Planck Observe Gravity Waves?“ In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0483.
Der volle Inhalt der QuelleLehn, Waldemar H., Wayne K. Silvester und David M. Fraser. „Mirages with Atmospheric Gravity Waves“. In Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.thb.3.
Der volle Inhalt der QuelleLin, Chunshan, und Misao Sasaki. „Resonant Amplification of Primordial Gravitational Waves“. In Second LeCosPA International Symposium: Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0035.
Der volle Inhalt der QuelleOnorato, Miguel. „Numerical Simulation Of Surface Gravity Waves“. In 28th Conference on Modelling and Simulation. ECMS, 2014. http://dx.doi.org/10.7148/2014-0007.
Der volle Inhalt der QuelleTrofimov, Evgenii A. „EXPERIMENTAL STUDY OF INTERNAL GRAVITY WAVES“. In Science Present and Future: Research Landscape in the 21st century. Иркутск: Федеральное государственное бюджетное учреждение науки "Иркутский научный центр Сибирского отделения Российской академии наук", 2022. http://dx.doi.org/10.54696/isc_49741454.
Der volle Inhalt der QuelleKim, Eun-jin. „Angular momentum transport by internal gravity waves“. In Waves in dusty, solar and space plasmas. AIP, 2000. http://dx.doi.org/10.1063/1.1324948.
Der volle Inhalt der QuelleLin, Jung-Tai. „Empirical Prediction of Wave Spectrum for Wind-Generated Gravity Waves“. In 20th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1987. http://dx.doi.org/10.1061/9780872626003.036.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gravity waves"
Guza, R. T. Surface Gravity Waves And Ambient Microseismic Noise. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256498.
Der volle Inhalt der QuelleMuller, Peter. ARI: Internal Gravity Waves at Abrupt Topography. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada266383.
Der volle Inhalt der QuelleFritts, David C. Nonlinear Spectral Evolution of Atmospheric Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada387509.
Der volle Inhalt der QuelleKo, Dong S. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1013704.
Der volle Inhalt der QuelleMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628215.
Der volle Inhalt der QuelleBottone, Steven. Acoustic-Gravity Waves From Low-Altitude Localized Disturbances. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada264804.
Der volle Inhalt der QuelleMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada624678.
Der volle Inhalt der QuelleSullivan, Peter P., James C. McWilliams und Chin-Hoh Moeng. Surface Gravity Waves and Coupled Marine Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625363.
Der volle Inhalt der QuelleSilverstein, Eva, und Alexander Westphal. Monodromy in the CMB: Gravity Waves and String Inflation. Office of Scientific and Technical Information (OSTI), März 2008. http://dx.doi.org/10.2172/926191.
Der volle Inhalt der QuelleDunkerton, Timothy J. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada303638.
Der volle Inhalt der Quelle