Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Graphical Modeler“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graphical Modeler" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Graphical Modeler"
Kim, Tae-Gon, und Jeong-Jae Lee. „Development of a Graphical Modeler for Manipulating Series Data Based on Object-Oriented Technique“. Journal of The Korean Society of Agricultural Engineers 51, Nr. 2 (31.03.2009): 43–49. http://dx.doi.org/10.5389/ksae.2009.51.2.043.
Der volle Inhalt der QuelleDraman, Murat, İ. Kuban Altinel, Nijaz Bajgoric, Ali Tamer Ünal und Burak Birgören. „A clone-based graphical modeler and mathematical model generator for optimal production planning in process industries“. European Journal of Operational Research 137, Nr. 3 (März 2002): 483–96. http://dx.doi.org/10.1016/s0377-2217(01)00066-2.
Der volle Inhalt der QuelleLiu, Ri Liang, Cheng Rui Zhang, A. Nassehi und S. T. Newman. „A STEP-NC Programming System for Prismatic Parts“. Materials Science Forum 532-533 (Dezember 2006): 1108–11. http://dx.doi.org/10.4028/www.scientific.net/msf.532-533.1108.
Der volle Inhalt der QuelleBrookes, Emre, Javier Pérez, Barbara Cardinali, Aldo Profumo, Patrice Vachette und Mattia Rocco. „Fibrinogen species as resolved by HPLC-SAXS data processing within theUltraScan Solution Modeler(US-SOMO) enhanced SAS module“. Journal of Applied Crystallography 46, Nr. 6 (15.11.2013): 1823–33. http://dx.doi.org/10.1107/s0021889813027751.
Der volle Inhalt der QuelleMostafa, Hala, und Reem Bahgat. „The Agent Visualization System: A Graphical and Textual Representation for Multi-Agent Systems“. Information Visualization 4, Nr. 2 (Juni 2005): 83–94. http://dx.doi.org/10.1057/palgrave.ivs.9500093.
Der volle Inhalt der QuelleDurak, Umut. „Pragmatic model transformations for refactoring in Scilab/Xcos“. International Journal of Modeling, Simulation, and Scientific Computing 07, Nr. 01 (März 2016): 1541004. http://dx.doi.org/10.1142/s1793962315410044.
Der volle Inhalt der QuelleJeelani, Mdi Begum, Abeer S. Alnahdi, Mohammed S. Abdo, Mansour A. Abdulwasaa, Kamal Shah und Hanan A. Wahash. „Mathematical Modeling and Forecasting of COVID-19 in Saudi Arabia under Fractal-Fractional Derivative in Caputo Sense with Power-Law“. Axioms 10, Nr. 3 (15.09.2021): 228. http://dx.doi.org/10.3390/axioms10030228.
Der volle Inhalt der QuelleIbănescu, Radu, und Cătălin Ungureanu. „Lagrange's Equations versus Bond Graph Modeling Methodology by an Example of a Mechanical System“. Applied Mechanics and Materials 809-810 (November 2015): 914–19. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.914.
Der volle Inhalt der QuelleDjuric, A. M., und W. H. ElMaraghy. „GENERALIZED RECONFIGURABLE 6 - JOINT ROBOT MODELING“. Transactions of the Canadian Society for Mechanical Engineering 30, Nr. 4 (Dezember 2006): 533–65. http://dx.doi.org/10.1139/tcsme-2006-0034.
Der volle Inhalt der QuelleTerres de Lima, Lucas, Sandra Fernández-Fernández, Jean Marcel de Almeida Espinoza, Miguel da Guia Albuquerque und Cristina Bernardes. „End Point Rate Tool for QGIS (EPR4Q): Validation Using DSAS and AMBUR“. ISPRS International Journal of Geo-Information 10, Nr. 3 (12.03.2021): 162. http://dx.doi.org/10.3390/ijgi10030162.
Der volle Inhalt der QuelleDissertationen zum Thema "Graphical Modeler"
Morris, David Victor. „A new graphical user interface for a 3D topological mesh modeler“. Texas A&M University, 2008. http://hdl.handle.net/1969.1/85977.
Der volle Inhalt der QuelleLindén, Philip. „Improving accessibility to the bus service : Building an accessibility measurement tool in QGIS“. Thesis, Umeå universitet, Institutionen för geografi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185145.
Der volle Inhalt der QuelleSrogis, Andrius. „Automatizuotas grafinio modelio performulavimas į natūralią kalbą“. Master's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130826_150207-45443.
Der volle Inhalt der QuelleThe graphical model architecture design is widely used for scientific and enterprise purposes. There are many languages concentrated on enterprise processes and static systems designing. One of the most popular modeling language (UML) is missing methodology and tools suitable for correct reformulation of graphical models (formulated by the UML) in natural language. The main purpose of the graphical model reformulation in natural language is to make models easier to understand for people whose are not specialized in UML. Methodology and tool which is capable of reformulating graphical models in natural language already exists, but it isn’t concentrated on UML or capable of reformulating static and dynamic processes. The main goal of this work is to define a methodology and implement a tool, which would be capable of translating the graphical UML model to a natural language text.
Cruz, Fernández Francisco. „Probabilistic graphical models for document analysis“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399520.
Der volle Inhalt der QuelleCurrently, more than 80% of the documents stored on paper belong to the business field. Advances in digitization techniques have fostered the interest in creating digital copies in order to solve maintenance and storage problems, as well as to have efficient ways for transmission and automatic extraction of the information contained therein. This situation has led to the need to create systems that can automatically extract and analyze this kind of information. The great variety of types of documents makes this not a trivial task. The extraction process of numerical data from tables or invoices differs substantially from a task of handwriting recognition in a document with annotations. However, there is a common link in the two tasks: Given a document, we need to identify the region where the information of interest is located. In the area of Document Analysis this process is called Layout Analysis, and aims at identifying and categorizing the different entities that compose the document. These entities can be text regions, pictures, text lines or tables, among others. This process can be done from two different approaches: physical or logical analysis. Physical analysis focus on identifying the physical boundaries that define the area of interest, whereas logical analysis also models information about the role and semantics of the entities within the scope of the document. To encode this information it is necessary to incorporate prior knowledge about the task into the analysis process, which can be introduced in terms of contextual relations between entities. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: what kind of contextual information is appropriate, and how to incorporate this information into the model. In this thesis we study several ways to incorporate contextual information on the task of document layout analysis. We focus on the study of Probabilistic Graphical Models and other mechanisms for the inclusion of contextual relations applied to the specific tasks of region identification and handwritten text line segmentation. On the one hand, we present several methods for region identification. First, we present a method for layout analysis based on Conditional Random Fields for maximum a posteriori estimation. We encode a set of structural relations between different classes of regions on a set of features. Second, we present a method based on 2D-Probabilistic Context-free Grammars and perform a comparative study between probabilistic graphical models and this syntactic approach. Third, we propose a statistical approach based on the Expectation-Maximization algorithm devised to structured documents. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical dataset composed of ancient structured documents, and a collection of contemporary documents. On the other hand, we present a probabilistic framework applied to the task of handwritten text line segmentation. We successfully combine the EM algorithm and variational approaches for this purpose. We demonstrate that the use of contextual information using probabilistic graphical models is of great utility for these tasks.
Melkersson, Oskar, und Adam Wretström. „Grafisk modellering som stöd i förstudiefasen : En aktionsforskning om hur grafiska modeller kan underlätta kommunikation mellan utvecklare ochanvändare i en förstudie“. Thesis, Linnéuniversitetet, Institutionen för informatik (IK), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27734.
Der volle Inhalt der QuellePapadopoulos, Nicholas. „A 3-D computer modelled animation system, implemented in an object-oriented message-passing environment“. Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360489.
Der volle Inhalt der QuelleMeruvia, Pastor Oscar Ernesto. „Frame coherent 3D stippling for non-photorealistic computer graphics“. [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971456097.
Der volle Inhalt der QuelleLohikoski, Håkansson Laura, und Elin Rudén. „Optimization of 3D Game Models : A qualitative research study in Unreal Development Kit“. Thesis, Södertörns högskola, Institutionen för naturvetenskap, miljö och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-22822.
Der volle Inhalt der QuelleMålet med vår studie var att se hur stor skillnad optimering av 3D-modeller i spel gör för att förbättra spelprestandan. Efter att ha utfört en pilotstudie beslutade vi oss för att använda en tidigare byggd 3D-scen för undersökningen i vår C-uppsats. Vi skapade två versioner av scenen i Unreal Development Kit, en där inga modeller var optimerade och den andra där vi optimerat modellerna. Vi skrev därefter ner statistik från de olika scenerna, nämligen draw calls, frame rate, millisecond per frame och visible static mesh elements liksom minnesanvändning. Efter att ha jämfört resultaten såg vi att det fanns en väsentlig skillnad mellan scenerna prestandamässigt. Både draw calls, frame rate och minnesanvändningen hade minskat efter optimeringen vilket ledde till att spelet kördes smidigare.
Santana, Murillo Vinícius Bento. „Desenvolvimento de sistema computacional via MATLAB/GUI (Graphical User Interface) para análise geometricamente não linear de estruturas“. reponame:Repositório Institucional da UFOP, 2015. http://www.repositorio.ufop.br/handle/123456789/5463.
Der volle Inhalt der QuelleSubmitted by Oliveira Flávia (flavia@sisbin.ufop.br) on 2015-05-20T20:14:24Z No. of bitstreams: 2 license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) DISSERTAÇÃO_SistemaComputacionalGráfico.pdf: 7158699 bytes, checksum: 95038dc4d47ce770d2d418b6065f18d5 (MD5)
Approved for entry into archive by Gracilene Carvalho (gracilene@sisbin.ufop.br) on 2015-05-22T14:56:03Z (GMT) No. of bitstreams: 2 license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) DISSERTAÇÃO_SistemaComputacionalGráfico.pdf: 7158699 bytes, checksum: 95038dc4d47ce770d2d418b6065f18d5 (MD5)
Made available in DSpace on 2015-05-22T14:56:03Z (GMT). No. of bitstreams: 2 license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) DISSERTAÇÃO_SistemaComputacionalGráfico.pdf: 7158699 bytes, checksum: 95038dc4d47ce770d2d418b6065f18d5 (MD5) Previous issue date: 2015
Com os avanços científicos e tecnológicos, o engenheiro estrutural passou a desenvolver e/ou ter acesso a programas computacionais que possibilitam análises numéricas mais avançadas. Isso vem proporcionando aumento da segurança e economia dos projetos. Para a concepção de estruturas mais esbeltas, a realização de análises não lineares geométricas, em que os efeitos de segunda ordem são explicitamente incluídos, torna-se cada vez mais comum. Nesse contexto, esta dissertação tem como objetivo avaliar o comportamento não linear geométrico estático de sistemas estruturais reticulados planos através do desenvolvimento e emprego de um sistema computacional gráfico interativo, denominado aqui AFA-OPSM (Advanced Frame Analysis - Ouro Preto School of Mines). Esse sistema utiliza os recursos de programação gráficos interativos (GUI) do software MATLAB, e apresenta, de forma acoplada, as etapas de pré-processamento, análise estrutural e pósprocessamento. Destaca-se ainda que ele é construído segundo o paradigma da programação orientada à objetos (POO), em que várias estratégias de solução não linear foram incorporadas. As formulações não lineares de elementos finitos são desenvolvidas considerando as teorias de treliças, de viga de Euler-Bernoulli e de Timoshenko, nos referenciais Lagrangiano total e co-rotacional. Os resultados numéricos obtidos, assim como os recursos gráficos interativos do AFA-OPSM, são avaliados através do estudo de problemas estruturais clássicos de estabilidade encontrados na literatura, alguns considerados fortemente não lineares. ______________________________________________________________________________
ABSTRACT: With the scientific and technologic advances, the structural engineer has now access to computational programs that make possible more advanced numerical analysis. This have proportionate an increase in the safety and economy of projects. For the conception of slender structures, the use of geometrically nonlinear analysis, where second order effects are explicitly included, are becoming more and more common. In this context, this dissertation aims to evaluate the geometrically nonlinear static behavior of plane trusses and frame structural systems through the development and use of an interactive graphical computational system, named here AFA-OPSM (Advanced Frame Analysis – Ouro Preto School of Mines). This system is developed with the programming and graphics resources of the software MATLAB, and shows, in an integrated way, the phases of modeling, analysis and results visualization. Still, it is important to point out that this computational system is build following the object orientation paradigm, in which a diversity of nonlinear solution strategies are incorporated. The nonlinear finite elements formulations are developed considering the bar and the Euler-Bernoulli and Timoshenko beam theories, and the total Lagrangian and co-rotational reference systems. The numerical results obtained in this work, as well as the graphical resources in AFA-OPSM, are evaluated and validated through the study of classical stability structural problems found in literature, some of which are considered highly nonlinear.
Schwaller, Loïc. „Exact Bayesian Inference in Graphical Models : Tree-structured Network Inference and Segmentation“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS210/document.
Der volle Inhalt der QuelleIn this dissertation we investigate the problem of network inference. The statistical frame- work tailored to this task is that of graphical models, in which the (in)dependence relation- ships satis ed by a multivariate distribution are represented through a graph. We consider the problem from a Bayesian perspective and focus on a subset of graphs making structure inference possible in an exact and e cient manner, namely spanning trees. Indeed, the integration of a function de ned on spanning trees can be performed with cubic complexity with respect to number of variables under some factorisation assumption on the edges, in spite of the super-exponential cardinality of this set. A careful choice of prior distributions on both graphs and distribution parameters allows to use this result for network inference in tree-structured graphical models, for which we provide a complete and formal framework.We also consider the situation in which observations are organised in a multivariate time- series. We assume that the underlying graph describing the dependence structure of the distribution is a ected by an unknown number of abrupt changes throughout time. Our goal is then to retrieve the number and locations of these change-points, therefore dealing with a segmentation problem. Using spanning trees and assuming that segments are inde- pendent from one another, we show that this can be achieved with polynomial complexity with respect to both the number of variables and the length of the series
Bücher zum Thema "Graphical Modeler"
Robinson, Stephen. "Multiresolution analysis of polygonal surfaces" graphics modeller. Manchester: University of Manchester, Department of Computer Science, 1996.
Den vollen Inhalt der Quelle findenKasʹi︠a︡nov, V. N. Vizualizat︠s︡ii︠a︡ grafov i grafovykh modeleĭ. Novosibirsk: Sibirskoe nauch. izd-vo, 2010.
Den vollen Inhalt der Quelle findenFerraro, Richard F. A tutorial guide to PT/Modeler 2.0 and Pro/ENGINEER. Reading, Mass: Addison-Wesley, 1998.
Den vollen Inhalt der Quelle findenComputer graphics and geometric modeling. New York: Springer, 1999.
Den vollen Inhalt der Quelle findenKoepke, Marguerite L. Model graphics: Building and using study models. New York: Van Nostrand Reinhold, 1988.
Den vollen Inhalt der Quelle findenWhittaker, J. Graphical models in applied multivariate statistics. Chichester [England]: Wiley, 1990.
Den vollen Inhalt der Quelle findenHow computer graphics work. Emeryville, Calif: Ziff-Davis Press, 1994.
Den vollen Inhalt der Quelle findenBarzel, Ronen. Physically-based modeling for computer graphics: A structured approach. Boston: Academic Press, 1992.
Den vollen Inhalt der Quelle findenPhysically-based modeling for computer graphics: A structured approach. Boston: Academic Press, 1992.
Den vollen Inhalt der Quelle findenEngineering design communication and modeling using Unigraphics NX. New York: Thomson Delmar Learning, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Graphical Modeler"
Draman, Murat, İ. Kuban Altinel, Nijaz Bajgoric, Ali Tamer Ünal und Burak Birgören. „An Object-Oriented Graphical Modeler for Optimal Production Planning in a Refinery“. In Operations Research/Computer Science Interfaces Series, 263–78. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4567-5_15.
Der volle Inhalt der QuelleBerdahl, Edgar, Peter Vasil und Andrew Pfalz. „Automatic Visualization and Graphical Editing of Virtual Modeling Networks for the Open-Source Synth-A-Modeler Compiler“. In Haptics: Perception, Devices, Control, and Applications, 490–500. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42324-1_48.
Der volle Inhalt der QuelleSucar, Luis Enrique. „Graphical Causal Models“. In Probabilistic Graphical Models, 237–46. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_13.
Der volle Inhalt der QuelleSucar, Luis Enrique. „Graphical Causal Models“. In Probabilistic Graphical Models, 287–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_14.
Der volle Inhalt der QuelleHasegawa, Takashi, und Naomasa Nakajima. „Solid Modeler with Assembly Representation Tables“. In Advanced Computer Graphics, 223–32. Tokyo: Springer Japan, 1986. http://dx.doi.org/10.1007/978-4-431-68036-9_15.
Der volle Inhalt der QuelleIvanova, Marieta Georgieva, Christian W. Probst, René Rydhof Hansen und Florian Kammüller. „Transforming Graphical System Models to Graphical Attack Models“. In Graphical Models for Security, 82–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29968-6_6.
Der volle Inhalt der QuelleLiu, Han, und John Lafferty. „Nonparametric Graphical Models“. In Handbook of Graphical Models, 309–24. Boca Raton, Florida : CRC Press, c2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429463976-13.
Der volle Inhalt der QuelleHøjsgaard, Søren, David Edwards und Steffen Lauritzen. „Gaussian Graphical Models“. In Graphical Models with R, 77–116. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2299-0_4.
Der volle Inhalt der QuelleSucar, Luis Enrique. „Relational Probabilistic Graphical Models“. In Probabilistic Graphical Models, 219–35. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_12.
Der volle Inhalt der QuelleSucar, Luis Enrique. „Relational Probabilistic Graphical Models“. In Probabilistic Graphical Models, 269–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Graphical Modeler"
Zhang, K. F., und Hoda H. ElMaraghy. „Validity Check for a Function-Oriented Modeler“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0402.
Der volle Inhalt der QuelleDerntl, Michael, Susanne Neumann und Petra Oberhuemer. „Propelling Standards-based Sharing and Reuse in Instructional Modeling Communities: The Open Graphical Learning Modeler (OpenGLM)“. In 2011 11th IEEE International Conference on Advanced Learning Technologies (ICALT). IEEE, 2011. http://dx.doi.org/10.1109/icalt.2011.135.
Der volle Inhalt der QuelleKameyama, Ken-ichi, Koichi Kondo und Koichi Ohtomi. „An Intelligent Interactive Layout CAD System for Industrial Plants“. In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0105.
Der volle Inhalt der QuelleParikyan, Tigran, Thomas Resch und Hans H. Priebsch. „Structured Model of Crankshaft in the Simulation of Engine Dynamics With AVL/EXCITE“. In ASME 2001 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-ice-435.
Der volle Inhalt der QuelleDani, Tushar H., und Rajit Gadh. „A Framework for Designing Component Shapes in a Virtual Reality Environment“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dfm-4372.
Der volle Inhalt der QuelleNishino, Hiroaki, Kenji Shiihara, Tsuneo Kagawa und Kouichi Utsumiya. „An IEC-based mobile 3D graphics modeler“. In 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2008. http://dx.doi.org/10.1109/icsmc.2008.4811268.
Der volle Inhalt der QuelleNishino, Hiroaki, Kenji Shihara, Tsuneo Kagawa und Kouichi Utsumiya. „A Ubiquitous 3D Graphics Modeler for Mobile Devices“. In 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2008. http://dx.doi.org/10.1109/ispa.2008.83.
Der volle Inhalt der QuelleKalnina, Elina. „Concrete syntax-based find for graphical DSLs“. In MODELS '20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3417990.3422008.
Der volle Inhalt der QuelleKalnins, Audris, und Janis Barzdins. „Metamodel specialization for graphical modeling language support“. In MODELS '16: ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2976767.2976779.
Der volle Inhalt der QuelleRodriguez-Echeverria, Roberto, Javier Luis Cánovas Izquierdo, Manuel Wimmer und Jordi Cabot. „Towards a Language Server Protocol Infrastructure for Graphical Modeling“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239383.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Graphical Modeler"
Richards, Whitman. Graphical Models and Collective Choice. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada438432.
Der volle Inhalt der QuelleGimpel, K., und D. Rudoy. Statistical Inference in Graphical Models. Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada482530.
Der volle Inhalt der QuelleMadigan, David, und Adrian E. Raftery. Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM's Window. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada241408.
Der volle Inhalt der QuelleWang, Haiqin, und Marek Druzdzel. Cloud Library for Directed Probabilistic Graphical Models. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada611690.
Der volle Inhalt der QuelleDavis, William B. Graphical Model Theory for Wireless Sensor Networks. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/833692.
Der volle Inhalt der QuelleRay, Avik, Sujay Sanghavi und Sanjay Shakkottai. Greedy Learning of Graphical Models with Small Girth. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada599141.
Der volle Inhalt der QuelleChernozhukov, Victor, Martin Spindler, Jannis Kück und Sven Klaassen. Uniform inference in high-dimensional Gaussian graphical models. The IFS, Juni 2019. http://dx.doi.org/10.1920/wp.cem.2019.2919.
Der volle Inhalt der QuelleKedem, B. A Graphical Similarity Measure for Time Series Models. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada158869.
Der volle Inhalt der QuelleMoura, Jose M. Distributed Sensing and Processing: A Graphical Model Approach. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada455686.
Der volle Inhalt der QuelleGosselin, Mark S., R. B. Taylor und Kenneth R. Craig. Representation of Hydrodynamic Model Results through Graphical Displays. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ad1003878.
Der volle Inhalt der Quelle