Dissertationen zum Thema „Graph theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Graph theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bessy, Stéphane. „Some problems in graph theory and graphs algorithmic theory“. Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00806716.
Der volle Inhalt der QuelleMyers, Joseph Samuel. „Extremal theory of graph minors and directed graphs“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619614.
Der volle Inhalt der QuelleJohnson, Chase R. „Molecular Graph Theory“. Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/1179.
Der volle Inhalt der QuelleFeghali, Carl. „Topics in graph colouring and extremal graph theory“. Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11790/.
Der volle Inhalt der QuelleNikwigize, Adolphe. „Graph theory : Route problems“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17397.
Der volle Inhalt der QuelleBerg, Deborah. „Connections Between Voting Theory and Graph Theory“. Scholarship @ Claremont, 2005. https://scholarship.claremont.edu/hmc_theses/178.
Der volle Inhalt der QuelleHatt, Justin Dale. „Online assessment of graph theory“. Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13389.
Der volle Inhalt der QuelleKeevash, Peter. „Topics in extremal graph theory“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619938.
Der volle Inhalt der QuelleLaw, Ka-ho, und 羅家豪. „Some results in graph theory“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44899816.
Der volle Inhalt der QuelleMorrison, Julie Lindsay. „Computational graph theory in bioinformatics“. Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435114.
Der volle Inhalt der QuelleRicher, Duncan Christopher. „Graph theory and combinatorial games“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621916.
Der volle Inhalt der QuelleEggemann, Nicole. „Some applications of graph theory“. Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/3953.
Der volle Inhalt der QuelleNieh, Ari. „Fractional Analogues in Graph Theory“. Scholarship @ Claremont, 2001. https://scholarship.claremont.edu/hmc_theses/131.
Der volle Inhalt der QuelleLetzter, Shoham. „Extremal graph theory with emphasis on Ramsey theory“. Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709415.
Der volle Inhalt der QuelleReed, Bruce. „A semi-strong perfect graph theorem /“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72812.
Der volle Inhalt der QuelleMeek, Darrin Leigh. „On graph approximation heuristics : an application to vertex cover on planar graphs“. Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/24088.
Der volle Inhalt der QuelleZuffi, Lorenzo. „Simplicial Complexes From Graphs Toward Graph Persistence“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13519/.
Der volle Inhalt der QuelleAnderson, Jon K. „Genetic algorithms applied to graph theory“. Virtual Press, 1999. http://liblink.bsu.edu/uhtbin/catkey/1136714.
Der volle Inhalt der QuelleDepartment of Computer Science
Peng, Richard. „Algorithm Design Using Spectral Graph Theory“. Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/277.
Der volle Inhalt der QuelleIslam, Mustafa R. „A hypertext graph theory reference system“. Virtual Press, 1993. http://liblink.bsu.edu/uhtbin/catkey/879844.
Der volle Inhalt der QuelleDepartment of Computer Science
Edwards, C. S. „Some extremal problems in graph theory“. Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373467.
Der volle Inhalt der QuelleGarbe, Frederik. „Extremal graph theory via structural analysis“. Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8869/.
Der volle Inhalt der QuelleGrinshpun, Andrey Vadim. „Some problems in Graph Ramsey Theory“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97767.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 149-156).
A graph G is r-Ramsey minimal with respect to a graph H if every r-coloring of the edges of G yields a monochromatic copy of H, but the same is not true for any proper subgraph of G. The study of the properties of graphs that are Ramsey minimal with respect to some H and similar problems is known as graph Ramsey theory; we study several problems in this area. Burr, Erdös, and Lovász introduced s(H), the minimum over all G that are 2- Ramsey minimal for H of [delta](G), the minimum degree of G. We find the values of s(H) for several classes of graphs H, most notably for all 3-connected bipartite graphs which proves many cases of a conjecture due to Szabó, Zumstein, and Zürcher. One natural question when studying graph Ramsey theory is what happens when, rather than considering all 2-colorings of a graph G, we restrict to a subset of the possible 2-colorings. Erdös and Hajnal conjectured that, for any fixed color pattern C, there is some [epsilon] > 0 so that every 2-coloring of the edges of a Kn, the complete graph on n vertices, which doesn't contain a copy of C contains a monochromatic clique on n[epsilon] vertices. Hajnal generalized this conjecture to more than 2 colors and asked in particular about the case when the number of colors is 3 and C is a rainbow triangle (a K3 where each edge is a different color); we prove Hajnal's conjecture for rainbow triangles. One may also wonder what would happen if we wish to cover all of the vertices with monochromatic copies of graphs. Let F = {F₁, F₂, . . .} be a sequence of graphs such that Fn is a graph on n vertices with maximum degree at most [delta]. If each Fn is bipartite, then the vertices of any 2-edge-colored complete graph can be partitioned into at most 2C[delta] vertex disjoint monochromatic copies of graphs from F, where C is an absolute constant. This result is best possible, up to the constant C.
by Andrey Vadim Grinshpun.
Ph. D.
Pappone, Francesco. „Graph neural networks: theory and applications“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.
Der volle Inhalt der QuelleParks, David J. „Graph theory in America, 1876-1950“. Thesis, Open University, 2012. http://oro.open.ac.uk/54663/.
Der volle Inhalt der QuelleSchuerger, Houston S. „Contributions to Geometry and Graph Theory“. Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707341/.
Der volle Inhalt der QuelleWeaver, Robert Wooddell. „Some problems in structural graph theory /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487268021746449.
Der volle Inhalt der QuelleFlorkowski, Stanley F. „Spectral graph theory of the Hypercube“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FFlorkowski.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Rasmussen, Craig W. "December 2008." Description based on title screen as viewed on January 29, 2009. Includes bibliographical references (p. 51-52). Also available in print.
Han, Lin. „Graph generative models from information theory“. Thesis, University of York, 2012. http://etheses.whiterose.ac.uk/3726/.
Der volle Inhalt der QuelleRobinson, Laura Ann. „Graph Theory for the Middle School“. Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2226.
Der volle Inhalt der QuelleLoveland, Susan M. „The Reconstruction Conjecture in Graph Theory“. DigitalCommons@USU, 1985. https://digitalcommons.usu.edu/etd/7022.
Der volle Inhalt der QuelleYi, Peipei. „Graph query autocompletion“. HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/557.
Der volle Inhalt der QuelleLopez, Christian P. „On the relationship between a graph and the cycle graph of its complement“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 1995. https://ro.ecu.edu.au/theses/1184.
Der volle Inhalt der QuelleHegde, Rajneesh. „New Tools and Results in Graph Structure Theory“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10481.
Der volle Inhalt der QuelleMorisi, Rita. „Graph–based techniques and spectral graph theory in control and machine learning“. Thesis, IMT Alti Studi Lucca, 2016. http://e-theses.imtlucca.it/188/1/Morisi_phdthesis.pdf.
Der volle Inhalt der QuelleHoang, Chinh T. „Perfect graphs“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74011.
Der volle Inhalt der QuelleHayward, Ryan B. „Two classes of perfect graphs“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74025.
Der volle Inhalt der QuelleOlariu, Stephan. „Results on perfect graphs“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73997.
Der volle Inhalt der QuelleWeinstein, Lee. „Empirical study of graph properties with particular interest towards random graphs“. Diss., Connect to the thesis, 2005. http://hdl.handle.net/10066/1485.
Der volle Inhalt der QuelleWaterhouse, Mary Alexandra Paula Royston Hastilow. „Coloured graph decompositions /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18769.pdf.
Der volle Inhalt der QuelleNarayanan, Bhargav. „Problems in Ramsey theory, probabilistic combinatorics and extremal graph theory“. Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/252850.
Der volle Inhalt der QuelleFiala, Nick C. „Some topics in combinatorial design theory and algebraic graph theory /“. The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402957198077.
Der volle Inhalt der QuelleBurns, Jonathan. „Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability“. Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.
Der volle Inhalt der QuelleTurner, Bethany. „Embeddings of Product Graphs Where One Factor is a Hypercube“. VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2455.
Der volle Inhalt der QuelleSrikanthan, T. „Bond graph analysis“. Thesis, Coventry University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373896.
Der volle Inhalt der QuelleChen, Xujin, und 陳旭瑾. „Graph partitions and integer flows“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30286256.
Der volle Inhalt der QuelleVella, Antoine. „A Fundamentally Topological Perspective on Graph Theory“. Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1033.
Der volle Inhalt der QuelleDouma, Femke. „Counting and averaging problems in graph theory“. Thesis, Durham University, 2010. http://etheses.dur.ac.uk/272/.
Der volle Inhalt der QuelleAl-Shimary, Abbas. „Applications of graph theory to quantum computation“. Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608359.
Der volle Inhalt der QuelleYilma, Zelealem Belaineh. „Results in Extremal Graph and Hypergraph Theory“. Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/49.
Der volle Inhalt der Quelle