Auswahl der wissenschaftlichen Literatur zum Thema „Graph theory“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graph theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Graph theory"

1

ILYUTKO, DENIS PETROVICH, und VASSILY OLEGOVICH MANTUROV. „INTRODUCTION TO GRAPH-LINK THEORY“. Journal of Knot Theory and Its Ramifications 18, Nr. 06 (Juni 2009): 791–823. http://dx.doi.org/10.1142/s0218216509007191.

Der volle Inhalt der Quelle
Annotation:
The present paper is an introduction to a combinatorial theory arising as a natural generalization of classical and virtual knot theory. There is a way to encode links by a class of "realizable" graphs. When passing to generic graphs with the same equivalence relations we get "graph-links". On one hand graph-links generalize the notion of virtual link, on the other hand they do not detect link mutations. We define the Jones polynomial for graph-links and prove its invariance. We also prove some a generalization of the Kauffman–Murasugi–Thistlethwaite theorem on "minimal diagrams" for graph-links.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

C.S., Harisha. „Graph Theory Approach to Number Theory Theorems“. Journal of Advanced Research in Dynamical and Control Systems 12, Nr. 01-Special Issue (13.02.2020): 568–72. http://dx.doi.org/10.5373/jardcs/v12sp1/20201105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Möhring, Rolf H. „Algorithmic graph theory and perfect graphs“. Order 3, Nr. 2 (Juni 1986): 207–8. http://dx.doi.org/10.1007/bf00390110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bumby, Richard T., und Dana May Latch. „Categorical constructions in graph theory“. International Journal of Mathematics and Mathematical Sciences 9, Nr. 1 (1986): 1–16. http://dx.doi.org/10.1155/s0161171286000017.

Der volle Inhalt der Quelle
Annotation:
This paper presents some graph-theoretic questions from the viewpoint of the portion of category theory which has become common knowledge. In particular, the reader is encouraged to consider whether there is only one natural category of graphs and how theories of directed graphs and undirected graphs are related.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pardo-Guerra, Sebastian, Vivek Kurien George, Vikash Morar, Joshua Roldan und Gabriel Alex Silva. „Extending Undirected Graph Techniques to Directed Graphs via Category Theory“. Mathematics 12, Nr. 9 (29.04.2024): 1357. http://dx.doi.org/10.3390/math12091357.

Der volle Inhalt der Quelle
Annotation:
We use Category Theory to construct a ‘bridge’ relating directed graphs with undirected graphs, such that the notion of direction is preserved. Specifically, we provide an isomorphism between the category of simple directed graphs and a category we call ‘prime graphs category’; this has as objects labeled undirected bipartite graphs (which we call prime graphs), and as morphisms undirected graph morphisms that preserve the labeling (which we call prime graph morphisms). This theoretical bridge allows us to extend undirected graph techniques to directed graphs by converting the directed graphs into prime graphs. To give a proof of concept, we show that our construction preserves topological features when applied to the problems of network alignment and spectral graph clustering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Prabha, S. Celine, M. Palanivel, S. Amutha, N. Anbazhagan, Woong Cho, Hyoung-Kyu Song, Gyanendra Prasad Joshi und Hyeonjoon Moon. „Solutions of Detour Distance Graph Equations“. Sensors 22, Nr. 21 (02.11.2022): 8440. http://dx.doi.org/10.3390/s22218440.

Der volle Inhalt der Quelle
Annotation:
Graph theory is a useful mathematical structure used to model pairwise relations between sensor nodes in wireless sensor networks. Graph equations are nothing but equations in which the unknown factors are graphs. Many problems and results in graph theory can be formulated in terms of graph equations. In this paper, we solved some graph equations of detour two-distance graphs, detour three-distance graphs, detour antipodal graphs involving with the line graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Firmansah, Fery, und Wed Giyarti. „Odd harmonious labeling on the amalgamation of the generalized double quadrilateral windmill graph“. Desimal: Jurnal Matematika 4, Nr. 3 (30.11.2021): 373–78. http://dx.doi.org/10.24042/djm.v4i3.10823.

Der volle Inhalt der Quelle
Annotation:
Graph labeling is one of the topics of graph theory that is growing very rapidly both in terms of theory and application. A graph that satisfies the labeling property of odd harmonious is called an odd harmonious graph. The method used in this research is qualitative research by developing a theory and a new class of graphs from odd harmonious graphs. In this research, a new graph class construction will be given in the form of an amalgamation of the generalized double quadrilateral windmill graph. Furthermore, it will be proved that the amalgamation of the generalized double quadrilateral windmill graph is an odd harmonious graph. So that the results of the research show that the amalgamation of the generalized double quadrilateral windmill graph is a new graph class of odd harmonious graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rodriguez, Jose. „Graph Theory“. Symmetry 10, Nr. 1 (22.01.2018): 32. http://dx.doi.org/10.3390/sym10010032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lloyd, E. Keith, und W. T. Tutte. „Graph Theory“. Mathematical Gazette 69, Nr. 447 (März 1985): 69. http://dx.doi.org/10.2307/3616480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Anderson, Ian, und Reinhard Diestel. „Graph Theory“. Mathematical Gazette 85, Nr. 502 (März 2001): 176. http://dx.doi.org/10.2307/3620535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Graph theory"

1

Bessy, Stéphane. „Some problems in graph theory and graphs algorithmic theory“. Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00806716.

Der volle Inhalt der Quelle
Annotation:
This document is a long abstract of my research work, concerning graph theory and algorithms on graphs. It summarizes some results, gives ideas of the proof for some of them and presents the context of the different topics together with some interesting open questions connected to them The first part precises the notations used in the rest of the paper; the second part deals with some problems on cycles in digraphs; the third part is an overview of two graph coloring problems and one problem on structures in colored graphs; finally the fourth part focus on some results in algorithmic graph theory, mainly in parametrized complexity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Myers, Joseph Samuel. „Extremal theory of graph minors and directed graphs“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Johnson, Chase R. „Molecular Graph Theory“. Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/1179.

Der volle Inhalt der Quelle
Annotation:
Graph Theory is a branch of mathematics that has a wealth of applications to other science and engineering disciplines, specifically Chemistry. The primary application of graphs to Chemistry is related to understanding of structure and symmetry at the molecular level. By projecting a molecule to the plane and examining it as a graph, a lot can be learned about the underlying molecular structure of a given compound. Using concepts of Graph Theory this masters project examines the underlying structures of two specific families of compounds, fullerenes and zeolites, from a chemical and mathematical perspective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Feghali, Carl. „Topics in graph colouring and extremal graph theory“. Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11790/.

Der volle Inhalt der Quelle
Annotation:
In this thesis we consider three problems related to colourings of graphs and one problem in extremal graph theory. Let $G$ be a connected graph with $n$ vertices and maximum degree $\Delta(G)$. Let $R_k(G)$ denote the graph with vertex set all proper $k$-colourings of $G$ and two $k$-colourings are joined by an edge if they differ on the colour of exactly one vertex. Our first main result states that $R_{\Delta(G)+1}(G)$ has a unique non-trivial component with diameter $O(n^2)$. This result can be viewed as a reconfigurations analogue of Brooks' Theorem and completes the study of reconfigurations of colourings of graphs with bounded maximum degree. A Kempe change is the operation of swapping some colours $a$, $b$ of a component of the subgraph induced by vertices with colour $a$ or $b$. Two colourings are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. Our second main result states that all $\Delta(G)$-colourings of a graph $G$ are Kempe equivalent unless $G$ is the complete graph or the triangular prism. This settles a conjecture of Mohar (2007). Motivated by finding an algorithmic version of a structure theorem for bull-free graphs due to Chudnovsky (2012), we consider the computational complexity of deciding if the vertices of a graph can be partitioned into two parts such that one part is triangle-free and the other part is a collection of complete graphs. We show that this problem is NP-complete when restricted to five classes of graphs (including bull-free graphs) while polynomial-time solvable for the class of cographs. Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and Talbot (2007) of the famous Erd\H{o}s-Ko-Rado Theorem in extremal combinatorics and obtain some results for the class of trees.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nikwigize, Adolphe. „Graph theory : Route problems“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Berg, Deborah. „Connections Between Voting Theory and Graph Theory“. Scholarship @ Claremont, 2005. https://scholarship.claremont.edu/hmc_theses/178.

Der volle Inhalt der Quelle
Annotation:
Mathematical concepts have aided the progression of many different fields of study. Math is not only helpful in science and engineering, but also in the humanities and social sciences. Therefore, it seemed quite natural to apply my preliminary work with set intersections to voting theory, and that application has helped to focus my thesis. Rather than studying set intersections in general, I am attempting to study set intersections and what they mean in a voting situation. This can lead to better ways to model preferences and to predict which campaign platforms will be most popular. Because I feel that allowing people to only vote for one candidate results in a loss of too much information, I consider approval voting, where people can vote for as many platforms as they like.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hatt, Justin Dale. „Online assessment of graph theory“. Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13389.

Der volle Inhalt der Quelle
Annotation:
The objective of this thesis is to establish whether or not online, objective questions in elementary graph theory can be written in a way that exploits the medium of computer-aided assessment. This required the identification and resolution of question design and programming issues. The resulting questions were trialled to give an extensive set of answer files which were analysed to identify whether computer delivery affected the questions in any adverse ways and, if so, to identify practical ways round these issues. A library of questions spanning commonly-taught topics in elementary graph theory has been designed, programmed and added to the graph theory topic within an online assessment and learning tool used at Brunel University called Mathletics. Distracters coded into the questions are based on errors students are likely to make, partially evidenced by final examination scripts. Questions were provided to students in Discrete Mathematics modules with an extensive collection of results compiled for analysis. Questions designed for use in practice environments were trialled on students from 2007 – 2008 and then from 2008 to 2014 inclusive under separate testing conditions. Particular focus is made on the relationship of facility and discrimination between comparable questions during this period. Data is grouped between topic and also year group for the 2008 – 2014 tests, namely 2008 to 2011 and 2011 to 2014, so that it may then be determined what factors, if any, had an effect on the overall results for these questions. Based on the analyses performed, it may be concluded that although CAA questions provide students with a means for improving their learning in this field of mathematics, what makes a question more challenging is not solely based on the number of ways a student can work out his/her solution but also on several other factors that depend on the topic itself.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Keevash, Peter. „Topics in extremal graph theory“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Law, Ka-ho, und 羅家豪. „Some results in graph theory“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44899816.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Morrison, Julie Lindsay. „Computational graph theory in bioinformatics“. Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Graph theory"

1

Golumbic, Martin Charles. Algorithmic graph theory and perfect graphs. 2. Aufl. Amsterdam: North Holland, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bondy, J. A. Graph theory. New York: Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gould, Ronald. Graph theory. Menlo Park, Calif: Benjamin/Cummings Pub. Co., 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gera, Ralucca, Stephen Hedetniemi und Craig Larson, Hrsg. Graph Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31940-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bondy, J. A., und U. S. R. Murty. Graph Theory. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84628-970-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Diestel, Reinhard. Graph Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14279-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gera, Ralucca, Teresa W. Haynes und Stephen T. Hedetniemi, Hrsg. Graph Theory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97686-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Diestel, Reinhard. Graph Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53622-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Merris, Russell. Graph Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/9781118033043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saoub, Karin R. Graph Theory. Boca Raton: CRC Press, 2021. | Series: Textbooks in mathematics: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781138361416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Graph theory"

1

O’Regan, Gerard. „Graph Theory“. In Texts in Computer Science, 141–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44561-8_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kirwan, Brock, und Ty Bodily. „Graph Theory“. In Encyclopedia of Clinical Neuropsychology, 1607–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_9069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sucar, Luis Enrique. „Graph Theory“. In Probabilistic Graphical Models, 27–38. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harris, John M., Jeffry L. Hirst und Michael J. Mossinghoff. „Graph Theory“. In Combinatorics and Graph Theory, 1–127. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-79711-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Neri, Ferrante. „Graph Theory“. In Linear Algebra for Computational Sciences and Engineering, 363–430. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40341-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

O’Regan, Gerard. „Graph Theory“. In Mathematics in Computing, 267–75. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4534-9_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kirwan, Brock, und Ty Bodily. „Graph Theory“. In Encyclopedia of Clinical Neuropsychology, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_9069-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wallis, W. D. „Graph Theory“. In A Beginner’s Guide to Finite Mathematics, 137–86. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4757-3814-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wallis, W. D. „Graph Theory“. In A Beginner’s Guide to Discrete Mathematics, 205–49. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4757-3826-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nievergelt, Yves. „Graph Theory“. In Foundations of Logic and Mathematics, 361–98. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0125-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Graph theory"

1

Bao, Jueming, Zhaorong Fu, Tanumoy Pramanik, Jun Mao, Yulin Chi, Yingkang Cao, Chonghao Zhai et al. „Multiphoton Multidimensional Entanglement Based on Graph Theory“. In CLEO: Applications and Technology, JTu2A.224. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.224.

Der volle Inhalt der Quelle
Annotation:
We demonstrate the capability of graph theory scheme to realize complex multiphoton multidimensional state. We show the generation of quantum states based on graph theory was realized by the reconfigurable integrated quantum chip. The 4-photon 3-dimensional GHZ state was generated and verified and manipulated for the first time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lopez, Blake R., und Victor M. Zavala. „Analysis of Chemical Engineering Curricula Using Graph Theory“. In Foundations of Computer-Aided Process Design, 975–82. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.190804.

Der volle Inhalt der Quelle
Annotation:
Chemical engineering is a highly complex interconnected major. Just as chemical engineers have broken complex processes into unit operations, the chemical engineering curriculum has been broken up into courses. The organization of these courses vary among institutions and are based on years of prior teachings and research. Despite this, there have been calls to revaluate the curriculum from both industry and academia. We propose a graph-based representation of curricula in which topics are represented by nodes and topic dependencies are represented by directed edges forming a directed acyclic graph. This enables using graph theory measures and tools to provide formal ways of evaluating a curriculum. Additionally, the abstraction is readily understandable meaning conversations between instructors regarding the curriculum can occur within a department and even across institutions. This abstraction is explained with a simplified curriculum and applied to the undergraduate chemical engineering curriculum at University of Wisconsin-Madison. Highly and lowly connected topics are identified and approaches for grouping the topics into modules are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Freeman, Jason. „Graph theory“. In ACM SIGGRAPH 2008 art gallery. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1400385.1400449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Freeman, Jason. „Graph theory“. In the 6th ACM SIGCHI conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1254960.1254998.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Freeman, Jason. „Graph theory“. In the 7th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1279740.1279794.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Oliveira, Daniel, Carlos Magno Abreu, Eduardo Ogasawara, Eduardo Bezerra und Leonardo De Lima. „A Science Gateway to Support Research in Spectral Graph Theory“. In XXXIV Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sbbd.2019.8826.

Der volle Inhalt der Quelle
Annotation:
Describing classes of graphs that optimize a function of the eigenvalues subject to some constraints is one of the topics addressed by Spectral Graph Theory (SGT). In this paper, we propose RioGraphX, a science gateway developed on top of Apache Spark, which aims to obtain all graphs that optimize a given mathematical function of the eigenvalues of a graph. Initial experiments involving small graphs have pointed out optimal graphs in a reasonable computational time, and also have shown that leveraging parallel processing is a promising approach to handle larger graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Devi, M. Manjula, und K. Karuppasamy. „Application of graph theory in chemical graphs“. In INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0179080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

THOMASSEN, CARSTEN. „CHROMATIC GRAPH THEORY“. In Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rabuzin, Kornelije, Sonja Ristić und Robert Kudelić. „GRAPH DATABASE MANAGEMENT SYSTEMS AND GRAPH THEORY“. In Fourth International Scientific Conference ITEMA Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2020. http://dx.doi.org/10.31410/itema.2020.39.

Der volle Inhalt der Quelle
Annotation:
In recent years, graph databases have become far more important. They have been proven to be an excellent choice for storing and managing large amounts of interconnected data. Since graph databases (GDB) rely on a graph data model based on graph theory, this study examines whether currently available graph database management systems support the principles of graph theory, and, if so, to what extent. We also show how these systems differ in terms of implementation and languages, and we also discuss which graph database management systems are used today and why.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kovalev, Mikhail Dmitrievich. „On structural graphs of theory of mechanisms“. In Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-74.

Der volle Inhalt der Quelle
Annotation:
It is shown that the graph commonly used by machine scientists in the analysis structures of mechanisms does not always carry complete information about the structure. It is proposed to use more suitable graphs, in particular, a weighted graph that carries complete information.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Graph theory"

1

Burch, Kimberly Jordan. Chemical Graph Theory. Washington, DC: The MAA Mathematical Sciences Digital Library, August 2008. http://dx.doi.org/10.4169/loci002857.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

GEORGIA INST OF TECH ATLANTA. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada266033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Thomas, Robin. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada271851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Obert, James, Sean D. Turner und Jason Hamlet. Graph Theory and IC Component Design Analysis. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1606298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sweeney, Matthew, und Emily Shinkle. Understanding Discrete Fracture Networks Through Spectral Graph Theory. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812641.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sweeney, Matthew, und Emily Shinkle. Understanding Discrete Fracture Networks Through Spectral Graph Theory. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812622.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shukla, Dr Minal. Exploring Graph Theory to Enhance Performance of Blockchain. ResearchHub Technologies, Inc., Juni 2024. http://dx.doi.org/10.55277/researchhub.w5pebey6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shukla, Dr Minal. Integrating Graph Theory for Consensus Mechanism of Blockchain Technology. ResearchHub Technologies, Inc., Juli 2024. http://dx.doi.org/10.55277/researchhub.l34eqdoa.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, Februar 2012. http://dx.doi.org/10.21236/ada567125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Horan, Victoria, und Michael Gudaitis. Investigation of Zero Knowledge Proof Approaches Based on Graph Theory. Fort Belvoir, VA: Defense Technical Information Center, Februar 2011. http://dx.doi.org/10.21236/ada540835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie