Dissertationen zum Thema „Graph embeddings“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Graph embeddings" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Labelle, François. „Graph embeddings and approximate graph coloring“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0031/MQ64386.pdf.
Der volle Inhalt der QuelleDjuphammar, Felix. „Efficient graph embeddings with community detection“. Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185134.
Der volle Inhalt der QuellePALUMBO, ENRICO. „Knowledge Graph Embeddings for Recommender Systems“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850588.
Der volle Inhalt der QuelleJenkins, Peter. „Partial graph design embeddings and related problems /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18945.pdf.
Der volle Inhalt der QuelleTurner, Bethany. „Embeddings of Product Graphs Where One Factor is a Hypercube“. VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2455.
Der volle Inhalt der QuelleZhang, Zheng. „Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS369/document.
Der volle Inhalt der QuelleWord embeddings are a standard component of modern natural language processing architectures. Every time there is a breakthrough in word embedding learning, the vast majority of natural language processing tasks, such as POS-tagging, named entity recognition (NER), question answering, natural language inference, can benefit from it. This work addresses the question of how to improve the quality of monolingual word embeddings learned by prediction-based models and how to map contextual word embeddings generated by pretrained language representation models like ELMo or BERT across different languages.For monolingual word embedding learning, I take into account global, corpus-level information and generate a different noise distribution for negative sampling in word2vec. In this purpose I pre-compute word co-occurrence statistics with corpus2graph, an open-source NLP-application-oriented Python package that I developed: it efficiently generates a word co-occurrence network from a large corpus, and applies to it network algorithms such as random walks. For cross-lingual contextual word embedding mapping, I link contextual word embeddings to word sense embeddings. The improved anchor generation algorithm that I propose also expands the scope of word embedding mapping algorithms from context independent to contextual word embeddings
Krombholz, Martin Rudolf Arne. „Proof theory of graph minors and tree embeddings“. Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/20834/.
Der volle Inhalt der QuelleBrunet, Richard Carleton University Dissertation Mathematics. „On the homotopy of polygons in graph embeddings“. Ottawa, 1993.
Den vollen Inhalt der Quelle findenPotter, John R. „Pseudo-triangulations on closed surfaces“. Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-021408-102227/.
Der volle Inhalt der QuelleBrooks, Eric B. „On the Embeddings of the Semi-Strong Product Graph“. VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3811.
Der volle Inhalt der QuelleJagtap, Surabhi. „Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST014.
Der volle Inhalt der QuelleBiological systems are composed of interacting bio-molecules at different molecular levels. With the advent of high-throughput technologies, omics data at their respective molecular level can be easily obtained. These huge, complex multi-omics data can be useful to provide insights into the flow of information at multiple levels, unraveling the mechanisms underlying the biological condition of interest. Integration of different omics data types is often expected to elucidate potential causative changes that lead to specific phenotypes, or targeted treatments. With the recent advances in network science, we choose to handle this integration issue by representing omics data through networks. In this thesis, we have developed three models, namely BraneExp, BraneNet, and BraneMF, for learning node embeddings from multilayer biological networks generated with omics data. We aim to tackle various challenging problems arising in multi-omics data integration, developing expressive and scalable methods capable of leveraging rich structural semantics of realworld networks
Wappler, Markus. „On Graph Embeddings and a new Minor Monotone Graph Parameter associated with the Algebraic Connectivity of a Graph“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-115518.
Der volle Inhalt der QuelleRagusa, Giorgio. „Graph designs“. Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1314.
Der volle Inhalt der QuelleWhalen, Peter. „Pfaffian orientations, flat embeddings, and Steinberg's conjecture“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52207.
Der volle Inhalt der QuellePrutkin, Roman [Verfasser], und D. [Akademischer Betreuer] Wagner. „Graph Embeddings Motivated by Greedy Routing / Roman Prutkin ; Betreuer: D. Wagner“. Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1153828650/34.
Der volle Inhalt der QuelleChen, Xiaofeng. „Plane Permutations and their Applications to Graph Embeddings and Genome Rearrangements“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77535.
Der volle Inhalt der QuellePh. D.
Yandrapally, Aruna Harini. „Combining Node Embeddings From Multiple Contexts Using Multi Dimensional Scaling“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627658906149105.
Der volle Inhalt der QuellePeng, Richard. „Algorithm Design Using Spectral Graph Theory“. Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/277.
Der volle Inhalt der QuelleWappler, Markus [Verfasser], Christoph [Akademischer Betreuer] Helmberg und Franz [Gutachter] Rendl. „On Graph Embeddings and a new Minor Monotone Graph Parameter associated with the Algebraic Connectivity of a Graph / Markus Wappler ; Gutachter: Franz Rendl ; Betreuer: Christoph Helmberg“. Chemnitz : Universitätsbibliothek Chemnitz, 2013. http://d-nb.info/1214245757/34.
Der volle Inhalt der QuelleMuller, Carole. „Minor-closed classes of graphs: Isometric embeddings, cut dominants and ball packings“. Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331629.
Der volle Inhalt der QuelleA class of graphs is closed under taking minors if for each graph in the class and each minor of this graph, the minor is also in the class. By a famous result of Robertson and Seymour, we know that characterizing such a class can be done by identifying a finite set of minimal excluded minors, that is, graphs which do not belong to the class and are minor-minimal for this property.In this thesis, we study three problems in minor-closed classes of graphs. The first two are related to the characterization of some graph classes, while the third one studies a packing-covering relation for graphs excluding a minor.In the first problem, we study isometric embeddings of edge-weighted graphs into metric spaces. In particular, we consider ell_2- and ell_∞-spaces. Given a weighted graph, an isometric embedding maps the vertices of this graph to vectors such that for each edge of the graph the weight of the edge equals the distance between the vectors representing its ends. We say that a weight function on the edges of the graph is a realizable distance function if such an embedding exists. The minor-monotone parameter f_p(G) determines the minimum dimension k of an ell_p-space such that any realizable distance function of G is realizable in ell_p^k. We characterize graphs with large f_p(G) value in terms of unavoidable minors for p = 2 and p = ∞. Roughly speaking, a family of graphs gives unavoidable minors for a minor-monotone parameter if these graphs “explain” why the parameter is high.The second problem studies the minimal excluded minors of the class of graphs such that φ(G) is bounded by some constant k, where φ(G) is a parameter related to the cut dominant of a graph G. This unbounded polyhedron contains all points that are componentwise larger than or equal to a convex combination of incidence vectors of cuts in G. The parameter φ(G) is equal to the maximum right-hand side of a facet-defining inequality of the cut dominant of G in minimum integer form. We study minimal excluded graphs for the property φ(G) <= 4 and provide also a new bound of φ(G) in terms of the vertex cover number.The last problem has a different flavor as it studies a packing-covering relation in classes of graphs excluding a minor. Given a graph G, a ball of center v and radius r is the set of all vertices in G that are at distance at most r from v. Given a graph and a collection of balls, we can define a hypergraph H such that its vertices are the vertices of G and its edges correspond to the balls in the collection. It is well-known that, in the hypergraph H, the transversal number τ(H) is at least the packing number ν(H). We show that we can bound τ(H) from above by a linear function of ν(H) for every graphs G and ball collections H if the graph G excludes a minor, solving an open problem by Chepoi, Estellon et Vaxès.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Sabo, Jozef. „Aplikace metody učení bez učitele na hledání podobných grafů“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445517.
Der volle Inhalt der QuelleGARBARINO, DAVIDE. „Acknowledging the structured nature of real-world data with graphs embeddings and probabilistic inference methods“. Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1092453.
Der volle Inhalt der QuelleGronemann, Martin [Verfasser], Michael [Akademischer Betreuer] Jünger, Markus [Akademischer Betreuer] Chimani und Bettina [Akademischer Betreuer] Speckmann. „Algorithms for Incremental Planar Graph Drawing and Two-page Book Embeddings / Martin Gronemann. Gutachter: Michael Jünger ; Markus Chimani ; Bettina Speckmann“. Köln : Universitäts- und Stadtbibliothek Köln, 2015. http://d-nb.info/1076864759/34.
Der volle Inhalt der QuelleHolmström, Oskar. „Exploring Transformer-Based Contextual Knowledge Graph Embeddings : How the Design of the Attention Mask and the Input Structure Affect Learning in Transformer Models“. Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175400.
Der volle Inhalt der QuelleProuteau, Thibault. „Graphs,Words, and Communities : converging paths to interpretability with a frugal embedding framework“. Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1006.
Der volle Inhalt der QuelleRepresentation learning with word and graph embedding models allows distributed representations of information that can in turn be used in input of machine learning algorithms. Through the last two decades, the tasks of embedding graphs’ nodes and words have shifted from matrix factorization approaches that could be trained in a matter of minutes to large models requiring ever larger quantities of training data and sometimes weeks on large hardware architectures. However, in a context of global warming where sustainability is a critical concern, we ought to look back to previous approaches and consider their performances with regard to resources consumption. Furthermore, with the growing involvement of embeddings in sensitive machine learning applications (judiciary system, health), the need for more interpretable and explainable representations has manifested. To foster efficient representation learning and interpretability, this thesis introduces Lower Dimension Bipartite Graph Framework (LDBGF), a node embedding framework able to embed with the same pipeline graph data and text from large corpora represented as co-occurrence networks. Within this framework, we introduce two implementations (SINr-NR, SINr-MF) that leverage community detection in networks to uncover a latent embedding space where items (nodes/words) are represented according to their links to communities. We show that SINr-NR and SINr-MF can compete with similar embedding approaches on tasks such as predicting missing links in networks (link prediction) or node features (degree centrality, PageRank score). Regarding word embeddings, we show that SINr-NR is a good contender to represent words via word co-occurrence networks. Finally, we demonstrate the interpretability of SINr-NR on multiple aspects. First with a human evaluation that shows that SINr-NR’s dimensions are to some extent interpretable. Secondly, by investigating sparsity of vectors, and how having fewer dimensions may allow interpreting how the dimensions combine and allow sense to emerge
Trouillon, Théo. „Modèles d'embeddings à valeurs complexes pour les graphes de connaissances“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM048/document.
Der volle Inhalt der QuelleThe explosion of widely available relational datain the form of knowledge graphsenabled many applications, including automated personalagents, recommender systems and enhanced web search results.The very large size and notorious incompleteness of these data basescalls for automatic knowledge graph completion methods to make these applicationsviable. Knowledge graph completion, also known as link-prediction,deals with automatically understandingthe structure of large knowledge graphs---labeled directed graphs---topredict missing entries---labeled edges. An increasinglypopular approach consists in representing knowledge graphs as third-order tensors,and using tensor factorization methods to predict their missing entries.State-of-the-art factorization models propose different trade-offs between modelingexpressiveness, and time and space complexity. We introduce a newmodel, ComplEx---for Complex Embeddings---to reconcile both expressivenessand complexity through the use of complex-valued factorization, and exploreits link with unitary diagonalization.We corroborate our approach theoretically and show that all possibleknowledge graphs can be exactly decomposed by the proposed model.Our approach based on complex embeddings is arguably simple,as it only involves a complex-valued trilinear product,whereas other methods resort to more and more complicated compositionfunctions to increase their expressiveness. The proposed ComplEx model isscalable to large data sets as it remains linear in both space and time, whileconsistently outperforming alternative approaches on standardlink-prediction benchmarks. We also demonstrateits ability to learn useful vectorial representations for other tasks,by enhancing word embeddings that improve performanceson the natural language problem of entailment recognitionbetween pair of sentences.In the last part of this thesis, we explore factorization models abilityto learn relational patterns from observed data.By their vectorial nature, it is not only hard to interpretwhy this class of models works so well,but also to understand where they fail andhow they might be improved. We conduct an experimentalsurvey of state-of-the-art models, not towardsa purely comparative end, but as a means to get insightabout their inductive abilities.To assess the strengths and weaknesses of each model, we create simple tasksthat exhibit first, atomic properties of knowledge graph relations,and then, common inter-relational inference through synthetic genealogies.Based on these experimental results, we propose new researchdirections to improve on existing models, including ComplEx
Lisena, Pasquale. „Knowledge-based music recommendation : models, algorithms and exploratory search“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.
Der volle Inhalt der QuelleRepresenting the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
Rocha, Mário. „The embedding of complete bipartite graphs onto grids with a minimum grid cutwidth“. CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2311.
Der volle Inhalt der QuelleBekkouch, Imad Eddine Ibrahim. „Auxiliary learning & Adversarial training pour les études des manuscrits médiévaux“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUL014.
Der volle Inhalt der QuelleThis thesis is at the intersection of musicology and artificial intelligence, aiming to leverage AI to help musicologists with repetitive work, such as object searching in the museum's manuscripts. We annotated four new datasets for medieval manuscript studies: AMIMO, AnnMusiconis, AnnVihuelas, and MMSD. In the second part, we improve object detectors' performances using Transfer learning techniques and Few Shot Object Detection.In the third part, we discuss a powerful approach to Domain Adaptation, which is auxiliary learning, where we train the model on the target task and an extra task that allows for better stabilization of the model and reduces over-fitting.Finally, we discuss self-supervised learning, which does not use extra meta-data by leveraging the adversarial learning approach, forcing the model to extract domain-independent features
Besomi, Ormazábal Guido Andrés. „Tree embeddings in dense graphs“. Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/164009.
Der volle Inhalt der QuelleMemoria para optar al título de Ingeniero Civil Matemático
En 1995 Komlós, Sárközy y Szemerédi probaron que para cualquier $\delta>0$ y cualquier entero positivo $\Delta$, todo grafo $G$ de orden $n$, con $n$ suficientemente grande, que satisfaga $\delta(G)\geq (1+\delta)\frac{n}{2}$, contiene como subgrafo a todo árbol de $n$ vértices y grado máximo acotado por $\Delta$. En esta memoria se presentan dos posibles generalizaciones de este resultado, estableciendo condiciones suficientes para el \textit{embedding} de árboles de orden $k$ en grafos con grado mínimo al menos $(1+\delta)\frac{k}{2}$, donde $k$ es lineal en el orden del grafo anfitrión. En 1963 Erd\H{o}s y Sós conjeturaron que, dado un entero $k$, un grafo $G$ con grado promedio mayor que $k-1$ debería contener todos los árboles en $k$ aristas como subgrafos. Como consecuencia de uno de los resultados principales de esta memoria, se demuestra una versión parcial de la conjetura de Erd\H{o}s-Sós. Siguiendo la linea del \textit{embedding} de árboles en grafos con condiciones de grado mínimo, Havet, Reed, Stein y Wood conjeturaron el 2016 que todo grafo con grado mínimo al menos $\lfloor\frac{2k}{3}\rfloor$ y grado máximo al menos $k$ contiene todo árbol con $k$ aristas como subgrafo. Las técnicas aquí desarrolladas permiten, adicionalmente, probar una versión parcial de esta conjetura.
CMM - Conicyt PIA AFB170001
Ahmed, Algabli Shaima. „Learning the Graph Edit Distance through embedding the graph matching“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669612.
Der volle Inhalt der QuelleLos gráficos son estructuras de datos abstractas que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada borde representa la relación entre estos puntos. Se podrían atribuir nodos y bordes para aumentar la precisión del modelo, lo que significa que estos atributos podrían variar de vectores de características a etiquetas de descripción. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como visión por computadora, biomédicos y análisis de redes, etc. La primera parte de esta tesis presenta un método general para aprender automáticamente los costos de edición involucrados en la Edición de Gráficos Distancia. El método se basa en incrustar pares de gráficos y su mapeo de nodo a nodo de verdad fundamental en un espacio euclidiano. De esta manera, el algoritmo de aprendizaje no necesita calcular ninguna coincidencia de gráfico tolerante a errores, que es el principal inconveniente de otros métodos debido a su complejidad computacional exponencial intrínseca. Sin embargo, el método de aprendizaje tiene la principal restricción de que los costos de edición deben ser constantes. Luego probamos este método con varias bases de datos de gráficos y también lo aplicamos para realizar el registro de imágenes. En la segunda parte de la tesis, este método se especializa en la verificación de huellas digitales. Las dos diferencias principales con respecto al otro método son que solo definimos los costos de edición de sustitución en los nodos. Por lo tanto, suponemos que los gráficos no tienen aristas. Y también, el método de aprendizaje no se basa en una clasificación lineal sino en una regresión lineal.
Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the model, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, biomedics, and network analysis, and so on .The first part of this thesis presents a general method to automatically learn the edit costs involved in the Graph Edit Distance. The method is based on embedding pairs of graphs and their ground-truth node-tonode mapping into a Euclidean space. In this way, the learning algorithm does not need to compute any Error-Tolerant Graph Matching, which is the main drawback of other methods due to its intrinsic exponential computational complexity. Nevertheless, the learning method has the main restriction that edit costs have to be constant. Then we test this method with several graph databases and also we apply it to perform image registration. In the second part of the thesis, this method is particularized to fingerprint verification. The two main differences with respect to the other method are that we only define the substitution edit costs on the nodes. Thus, we assume graphs do not have edges. And also, the learning method is not based on a linear classification but on a linear regression.
Carroll, Douglas Edmonds. „Embedding parameterized graph classes into normed spaces“. Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1324389171&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleTahraoui, Mohammed Amin. „Coloring, packing and embedding of graphs“. Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Der volle Inhalt der QuelleCooley, Oliver Josef Nikolaus. „Embedding Problems for Graphs and Hypergraphs“. Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/766/.
Der volle Inhalt der QuelleTreglown, Andrew Clark. „Embedding problems in graphs and hypergraphs“. Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1345/.
Der volle Inhalt der QuelleRandby, Scott P. „Embedding K? in 4-connected graphs /“. The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487759055158486.
Der volle Inhalt der QuelleErten, Cesim. „Simultaneous embedding and visualization of graphs“. Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/290066.
Der volle Inhalt der QuelleDube, Matthew P. „An Embedding Graph for 9-Intersection Topological Spatial Relations“. Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/DubeMP2009.pdf.
Der volle Inhalt der QuelleMONDAL, DEBAJYOTI. „Embedding a Planar Graph on a Given Point Set“. Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.
Der volle Inhalt der QuelleMitropolitsky, Milko. „On the Impact of Graph Embedding on Device Placement“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280435.
Der volle Inhalt der QuelleModerna neurala nätverk (NN) -modeller kräver mer data och parametrar för att utföra allt mer komplexa uppgifter. När en NN-modell blir för stor för att rymmas på en dator, kan den behöva distribueras över flera datorer. Vilka vil- kor som ska användas vid distributionen av en NN-modell, och mer konkret hur olika delar av modellen ska spridas över olika datorer kallas enhetsplats- problemet. Avhandlingen kommer att fokusera på detta problem. Tidigare till- vägagångssätt har krävt att placeringspolicyn skapas manuellt av människor med expertis i detta område. Eftersom den metoden inte går att skala upp fo- kuserar man på att hantera enhetsplaceringsproblemet genom att automatisera processen med reinforcement learning (RL). De flesta av RL-systemen inne- håller olika typer av grafinbäddningsmoduler.I arbetet försöker vi öka kunskapen om hur man hanterar problem med enhetsplacering genom att mäta och bedöma effekterna av grafinbäddningar på kvaliteten på villkoren för enhetsplacering. Vi jämför de olika metoderna på två sätt: runtime improvement and computation time. Den förstnämnda är ett värde för hur mycket snabbare den nya placeringspolicyn är i jämförelse med en baslinje. Det andra beskriver hur mycket tid som krävs av systemet för att uppnå den förbättrade runtime.Den här avhandlingen bygger på tidigare forskning inom området av enhetsplacering för att undersöka hur olika topp- moderna metoder till enhetsplaceringsprinciper. Grafinbäddningsarkitekturer som vi jämför i avhandlignen är Placeto (används som en baslinje), Graph- SAGE och P-GNN.Vi uppnår en förbättring av runtime med en ökning på 23.967% när vi använder P-GNN jämfört med Placeto och 31.164% ökning från baslinjen. GraphSAGE ger 1.165% bättre resultat än Placeto med samma installation. När det gäller beräkningstiden har GraphSAGE en förbättring på 11.560% jämfört med Placeto, medan P-GNN är 6.950% långsammare än baslinjen.Med resultaten kan vi bekräfta att grafinbäddningsarkitektur kan ha en be- tydande inverkan på enhetsplaceringsprinciper och deras prestanda. Desto mer invecklad grafinbäddningsarkitekturer fångar mer data om grafen och dess to- pologi ger runtime improvment. Däremot blir kan komplexiteten kosta i com- putation time på grund av det tid som krävs för att utbilda placeringssystemet.
Behzadi, Lila. „An improved spring-based graph embedding algorithm and LayoutShow, a Java environment for graph drawing“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq43368.pdf.
Der volle Inhalt der QuelleFowler, Joe. „Unlabled Level Planarity“. Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195812.
Der volle Inhalt der QuelleKnox, Fiachra. „Embedding spanning structures in graphs and hypergraphs“. Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4027/.
Der volle Inhalt der QuelleOkuno, Akifumi. „Studies on Neural Network-Based Graph Embedding and Its Extensions“. Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Der volle Inhalt der QuelleEhard, Stefan [Verfasser]. „Embeddings and decompositions of graphs and hypergraphs / Stefan Ehard“. Ulm : Universität Ulm, 2021. http://d-nb.info/1224969421/34.
Der volle Inhalt der QuelleWåhlin, Lova. „Towards Machine Learning Enabled Automatic Design of IT-Network Architectures“. Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249213.
Der volle Inhalt der QuelleDet är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
Mihalisin, James Edward. „Polytopal digraphs and non-polytopal facet graphs /“. Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5760.
Der volle Inhalt der QuelleGibert, Domingo Jaume. „Vector Space Embedding of Graphs via Statistics of Labelling Information“. Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96240.
Der volle Inhalt der QuellePattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyze patterns. Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding. In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
Henderson, Matthew James. „Embedding Symmetric Latin Squares and Edge-Coloured graphs“. Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485356.
Der volle Inhalt der QuelleSiameh, Theophilus. „Graph Analytics Methods In Feature Engineering“. Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3307.
Der volle Inhalt der Quelle