Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Graph dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graph dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Graph dynamics"
Huang, Xueqin, Xianqiang Zhu, Xiang Xu, Qianzhen Zhang und Ailin Liang. „Parallel Learning of Dynamics in Complex Systems“. Systems 10, Nr. 6 (15.12.2022): 259. http://dx.doi.org/10.3390/systems10060259.
Der volle Inhalt der QuelleLi, Jintang, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu und Changhua Meng. „Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 7 (26.06.2023): 8588–96. http://dx.doi.org/10.1609/aaai.v37i7.26034.
Der volle Inhalt der QuelleZhang, Lei, Zhiqian Chen, Chang-Tien Lu und Liang Zhao. „From “Dynamics on Graphs” to “Dynamics of Graphs”: An Adaptive Echo-State Network Solution (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 11 (28.06.2022): 13111–12. http://dx.doi.org/10.1609/aaai.v36i11.21692.
Der volle Inhalt der QuelleAhmed Mouhamadou WADE. „Tight bounds on exploration of constantly connected cacti-paths“. World Journal of Advanced Research and Reviews 12, Nr. 1 (30.10.2021): 355–61. http://dx.doi.org/10.30574/wjarr.2021.12.1.0534.
Der volle Inhalt der QuelleDi Ianni, Miriam. „Game of Life-like Opinion Dynamics: Generalizing the Underpopulation Rule“. AppliedMath 3, Nr. 1 (28.12.2022): 10–36. http://dx.doi.org/10.3390/appliedmath3010002.
Der volle Inhalt der QuelleMouhamadou Wade, Ahmed. „EXPLORATION WITH RETURN OF HIGHLY DYNAMIC NETWORKS“. International Journal of Advanced Research 9, Nr. 10 (31.10.2021): 315–19. http://dx.doi.org/10.21474/ijar01/13550.
Der volle Inhalt der QuelleChen, Haiyan, und Fuji Zhang. „Spectral Dynamics of Graph Sequences Generated by Subdivision and Triangle Extension“. Electronic Journal of Linear Algebra 32 (06.02.2017): 454–63. http://dx.doi.org/10.13001/1081-3810.3583.
Der volle Inhalt der QuelleChen, Lanlan, Kai Wu, Jian Lou und Jing Liu. „Signed Graph Neural Ordinary Differential Equation for Modeling Continuous-Time Dynamics“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 8 (24.03.2024): 8292–301. http://dx.doi.org/10.1609/aaai.v38i8.28670.
Der volle Inhalt der QuelleFahrenthold, E. P., und J. D. Wargo. „Lagrangian Bond Graphs for Solid Continuum Dynamics Modeling“. Journal of Dynamic Systems, Measurement, and Control 116, Nr. 2 (01.06.1994): 178–92. http://dx.doi.org/10.1115/1.2899209.
Der volle Inhalt der QuelleChen, Libin, Luyao Wang, Chengyi Zeng, Hongfu Liu und Jing Chen. „DHGEEP: A Dynamic Heterogeneous Graph-Embedding Method for Evolutionary Prediction“. Mathematics 10, Nr. 22 (09.11.2022): 4193. http://dx.doi.org/10.3390/math10224193.
Der volle Inhalt der QuelleDissertationen zum Thema "Graph dynamics"
Ribeiro, Andre Figueiredo. „Graph dynamics : learning and representation“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34184.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 58-60).
Graphs are often used in artificial intelligence as means for symbolic knowledge representation. A graph is nothing more than a collection of symbols connected to each other in some fashion. For example, in computer vision a graph with five nodes and some edges can represent a table - where nodes correspond to particular shape descriptors for legs and a top, and edges to particular spatial relations. As a framework for representation, graphs invite us to simplify and view the world as objects of pure structure whose properties are fixed in time, while the phenomena they are supposed to model are actually often changing. A node alone cannot represent a table leg, for example, because a table leg is not one structure (it can have many different shapes, colors, or it can be seen in many different settings, lighting conditions, etc.) Theories of knowledge representation have in general concentrated on the stability of symbols - on the fact that people often use properties that remain unchanged across different contexts to represent an object (in vision, these properties are called invariants). However, on closer inspection, objects are variable as well as stable. How are we to understand such problems? How is that assembling a large collection of changing components into a system results in something that is an altogether stable collection of parts?
(cont.) The work here presents one approach that we came to encompass by the phrase "graph dynamics". Roughly speaking, dynamical systems are systems with states that evolve over time according to some lawful "motion". In graph dynamics, states are graphical structures, corresponding to different hypothesis for representation, and motion is the correction or repair of an antecedent structure. The adapted structure is an end product on a path of test and repair. In this way, a graph is not an exact record of the environment but a malleable construct that is gradually tightened to fit the form it is to reproduce. In particular, we explore the concept of attractors for the graph dynamical system. In dynamical systems theory, attractor states are states into which the system settles with the passage of time, and in graph dynamics they correspond to graphical states with many repairs (states that can cope with many different contingencies). In parallel with introducing the basic mathematical framework for graph dynamics, we define a game for its control, its attractor states and a method to find the attractors. From these insights, we work out two new algorithms, one for Bayesian network discovery and one for active learning, which in combination we use to undertake the object recognition problem in computer vision. To conclude, we report competitive results in standard and custom-made object recognition datasets.
by Andre Figueiredo Ribeiro.
S.M.
Kuhlman, Christopher James. „Generalizations of Threshold Graph Dynamical Systems“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76765.
Der volle Inhalt der QuelleMaster of Science
Arnlind, Joakim. „Graph Techniques for Matrix Equations and Eigenvalue Dynamics“. Doctoral thesis, KTH, Matematik (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4608.
Der volle Inhalt der QuelleQC 20100630
Ayazifar, Babak 1967. „Graph spectra and modal dynamics of oscillatory networks“. Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16913.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 186-191).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Our research focuses on developing design-oriented analytical tools that enable us to better understand how a network comprising dynamic and static elements behaves when it is set in oscillatory motion, and how the interconnection topology relates to the spectral properties of the system. Such oscillatory networks are ubiquitous, extending from miniature electronic circuits to large-scale power networks. We tap into the rich mathematical literature on graph spectra, and develop theoretical extensions applicable to networks containing nodes that have finite nonnegative weights-including nodes of zero weight, which occur naturally in the context of power networks. We develop new spectral graph-theoretic results spawned by our engineering interests, including generalizations (to node-weighted graphs) of various structure-based eigenvalue bounds. The central results of this thesis concern the phenomenon of dynamic coherency, in which clusters of vertices move in unison relative to each other. Our research exposes the relation between coherency and network structure and parameters. We study both approximate and exact dynamic coherency. Our new understanding of coherency leads to a number of results. We expose a conceptual link between theoretical coherency and the confinement of an oscillatory mode to a node cluster. We show how the eigenvalues of a coherent graph relate to those of its constituent clusters.
(cont.) We use our eigenvalue expressions to devise a novel graph design algorithm; given a set of vertices (of finite positive weight) and a desired set of eigenvalues, we construct a graph that meets the specifications. Our novel graph design algorithm has two interesting corollaries: the graph eigenvectors have regions of support that monotonically decrease toward faster modes, and we can construct graphs that exactly meet our generalized eigenvalue bounds. It is our hope that the results of this thesis will contribute to a better understanding of the links between structure and dynamics in oscillatory networks.
by Babak Ayazifar.
Ph.D.
Homer, Martin Edward. „Bifurcations and dynamics of piecewise smooth dynamical systems of arbitrary dimension“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299271.
Der volle Inhalt der QuelleLee, Daryl Hsu Ann. „Toward large-graph comparison measures to understand Internet topology dynamics“. Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37658.
Der volle Inhalt der QuelleBy measuring network changes, we can get a better understanding of a network. Extending this to the Internet, we are able to understand the constantly occuring changes on an international scale. In this research, we propose a measure that conveys the relative magnitude of the change between two networks (i.e., Internet topology). The measure is normalised and intuitively gives an indication of whether the change is small or large. We start off by applying this measure to standard common graphs, as well as random graphs. These graphs were first simulated and the measurements taken; results were then proved theoretically. These corresponded to the simulation results, thus demonstrating correctness. For case studies, we compared actual implemented networks with that which is inferred by probes. This comparison was done to study how accurate the probes were in discovering actual network topology. Finally, we conducted real-world experiments by applying the measurements to certain segments of the Internet. We observed that the measurements indeed do pick up events which significantly influenced structural changes to the Internet.
Giscard, Pierre-Louis. „A graph theoretic approach to matrix functions and quantum dynamics“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ceef15b0-eed2-4615-a9f2-f9efbef470c9.
Der volle Inhalt der QuelleAyala-Hoffmann, Jose. „Global behavior of graph dynamics with applications to Markov chains“. [Ames, Iowa : Iowa State University], 2008.
Den vollen Inhalt der Quelle findenMagkakis, Andreas Gkompel. „Counting, modular counting and graph homomorphisms“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0.
Der volle Inhalt der QuelleBudai, Daniel, und David Jallo. „The Market Graph : A study of its characteristics, structure & dynamics“. Thesis, KTH, Matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103094.
Der volle Inhalt der QuelleI denna uppsats har vi tittat på tre olika marknadsgrafer; en enbart baserad på avkastning, en baserad på avkastning med likvidviktade noder och slutligen en baserad på volymkorrelationer. Studien är gjord på två olika marknader; den svenska och den amerikanska aktiemarknaden. Vi vill introducera grafteori som ett verktyg för att representera aktiemarknaden och visa att man bättre kan förstå aktiemarknadens strukturerade egenskaper och dynamik genom att studera marknadsgrafen. Vi fann många tecken på en ökad globalisering genom att titta på klusterkoefficienten och korrelationsfördelningen. Marknadsgrafens struktur är så att den lokaliserar specifika sektorer när korrelationstaket ökas och olika sektorer är funna för de två olika marknaderna. För låga korrelationstak fann vi grupper av oberoende aktier som kan användas som diversifierade portföljer. Vidare, avslöjar dynamiken att det är möjligt att använda daglig absolut förändring i bågdensiteten som en indikator för när marknaden är på väg att gå ner. Detta kan vara ett intressant ämne för vidare studier. Vi hade hoppats på att erhålla ytterligare resultat genom att titta på volymkorrelationer men det visade sig att så inte var fallet. Trots det tycker vi att det skulle vara intressant att djupare studera volymbaserade marknadsgrafer.
Bücher zum Thema "Graph dynamics"
Prisner, E. Graph dynamics. New York: Longman, 1995.
Den vollen Inhalt der Quelle findenPrisner, E. Graph dynamics. Harlow, Essex: Longman, 1995.
Den vollen Inhalt der Quelle findenRandom graph dynamics. Cambridge: Cambridge University Press, 2007.
Den vollen Inhalt der Quelle findenŚwider, Jerzy. Macierzowe grafy hybrydowe w opisie drgających, złożonych układów mechanicznych. Gliwice: Wydawn. Politechniki Śląskiej, 1991.
Den vollen Inhalt der Quelle findenBrown, Forbes T. Engineering system dynamics: A unified graph-centered approach. 2. Aufl. Boca Raton, FL: CRC/Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenEngineering system dynamics: A unified graph-centered approach. New York: Marcel Dekker, 2001.
Den vollen Inhalt der Quelle findenHorst, Bunke, Hrsg. A graph-theoretic approach to enterprise network dynamics. Boston: Birkhäuser, 2007.
Den vollen Inhalt der Quelle findenMariusz, Urbaʹnski, Hrsg. Graph directed Markov systems: Geometry and dynamics of limit sets. Cambridge: Cambridge University Press, 2003.
Den vollen Inhalt der Quelle findenWatts, Duncan J. Small worlds: The dynamics of networks between order and randomness. Princeton, N.J: Princeton University Press, 1999.
Den vollen Inhalt der Quelle findenOsipenko, Georgiy. Computer-oriented methods of dynamic systems. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1912470.
Der volle Inhalt der QuelleBuchteile zum Thema "Graph dynamics"
Arrighi, Pablo, und Gilles Dowek. „Causal Graph Dynamics“. In Automata, Languages, and Programming, 54–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31585-5_9.
Der volle Inhalt der QuelleCittadini, Luca, Tiziana Refice, Alessio Campisano, Giuseppe Di Battista und Claudio Sasso. „Policy-Aware Visualization of Internet Dynamics“. In Graph Drawing, 435–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_43.
Der volle Inhalt der QuelleJain, Abhinandan. „Graph Theory Connections“. In Robot and Multibody Dynamics, 135–57. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7267-5_8.
Der volle Inhalt der QuelleFagnani, Fabio, und Paolo Frasca. „Graph Theory“. In Introduction to Averaging Dynamics over Networks, 1–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68022-4_1.
Der volle Inhalt der QuelleKing, R. B. „Polyhedral Dynamics“. In Graph Theoretical Approaches to Chemical Reactivity, 109–35. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1202-4_4.
Der volle Inhalt der QuelleArrighi, Pablo, Simon Martiel und Simon Perdrix. „Reversible Causal Graph Dynamics“. In Reversible Computation, 73–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40578-0_5.
Der volle Inhalt der Quellevan Benthem, Johan, und Fenrong Liu. „Graph Games and Logic Design“. In Knowledge, Proof and Dynamics, 125–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2221-5_7.
Der volle Inhalt der QuelleSeeler, Karl A. „Introduction to the Linear Graph Method, Step Responses, and Superposition“. In System Dynamics, 117–93. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9152-1_3.
Der volle Inhalt der QuelleDell’Antonio, Gianfausto, und Alessandro Michelangeli. „Dynamics on a Graph as the Limit of the Dynamics on a “Fat Graph”“. In Mathematical Technology of Networks, 49–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16619-3_5.
Der volle Inhalt der QuelleJacob, Abraham, und P. B. Ramkumar. „Intuitionistic Fuzzy Graph Morphological Topology“. In Topological Dynamics and Topological Data Analysis, 255–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Graph dynamics"
Belim, Sergey V., und Anton N. Mironenko. „Using the graph-theoretic approach to solving the Role Mining problem“. In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601487.
Der volle Inhalt der QuelleCai, Borui, Yong Xiang, Longxiang Gao, He Zhang, Yunfeng Li und Jianxin Li. „Temporal Knowledge Graph Completion: A Survey“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/734.
Der volle Inhalt der QuelleLesfari, Hicham, Frédéric Giroire und Stéphane Pérennes. „Biased Majority Opinion Dynamics: Exploiting Graph k-domination“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/54.
Der volle Inhalt der QuelleMancini, Felice, Daniel Grande und Pradeep Radhakrishnan. „An Automated Virtual Lab for Bond Graph Based Dynamics Modeling Using Graph Grammars and Tree Search“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66110.
Der volle Inhalt der QuelleGrande, Daniel, Felice Mancini und Pradeep Radhakrishnan. „An Automated Graph Grammar Based Tool to Automatically Generate System Bond Graphs for Dynamic Analysis“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59941.
Der volle Inhalt der QuelleYin, Cheng, Shengqi Jian, Md Hassan Faghih, Md Toufiqul Islam und Luc Rolland. „Bond Graph Modeling and Simulating of 3 RPR Planar Parallel Manipulator“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38601.
Der volle Inhalt der QuellePopov, Anton I., Igor Y. Popov, Dmitri S. Nikiforov und Irina V. Blinova. „Time-dependent metric graph: Wave dynamics“. In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114299.
Der volle Inhalt der QuelleBurch, Michael, Günter Wallner, Huub van de Wetering, Freek Rooks und Olof Morra. „Visual Analysis of Graph Algorithm Dynamics“. In VINCI 2021: The 14th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3481549.3481550.
Der volle Inhalt der QuelleWu, Zhaohong, Matthew I. Campbell und Benito R. Fernandez. „A Design Representation to Support the Automatic Dynamic Evaluation of Electromechanical Designs“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81799.
Der volle Inhalt der QuelleSharma, Kartik, Rakshit Trivedi, Rohit Sridhar und Srijan Kumar. „Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models“. In KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3580305.3599517.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Graph dynamics"
Djidjev, Hristo Nikolov, Georg Hahn, Susan M. Mniszewski, Christian Francisco Negre, Anders Mauritz Niklasson und Vivek Sardeshmukh. Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1330079.
Der volle Inhalt der QuelleThulasidasan, Sunil. The Graph Laplacian and the Dynamics of Complex Networks. Office of Scientific and Technical Information (OSTI), Juni 2012. http://dx.doi.org/10.2172/1043504.
Der volle Inhalt der QuelleChew, Geoffrey F. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'. Office of Scientific and Technical Information (OSTI), Mai 2003. http://dx.doi.org/10.2172/813522.
Der volle Inhalt der QuelleKularatne, Dhanushka N., Subhrajit Bhattacharya und M. Ani Hsieh. Computing Energy Optimal Paths in Time-Varying Flows. Drexel University, 2016. http://dx.doi.org/10.17918/d8b66v.
Der volle Inhalt der QuelleMesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, Februar 2012. http://dx.doi.org/10.21236/ada567125.
Der volle Inhalt der QuelleSoloviev, Vladimir, Victoria Solovieva, Anna Tuliakova, Alexey Hostryk und Lukáš Pichl. Complex networks theory and precursors of financial crashes. [б. в.], Oktober 2020. http://dx.doi.org/10.31812/123456789/4119.
Der volle Inhalt der QuelleGallagher, B., und T. Eliassi-Rad. API Requirements for Dynamic Graph Prediction. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/1036864.
Der volle Inhalt der QuelleKhanna, S., R. Motwani und R. H. Wilson. On certificates and lookahead in dynamic graph problems. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/93769.
Der volle Inhalt der QuelleBhatele, Abhinav, Sebastien Fourestier, Harshitha Menon, Laxmikant V. Kale und Francois Pellegrini. Applying graph partitioning methods in measurement-based dynamic load balancing. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1114706.
Der volle Inhalt der QuelleLabute, M., und M. Dombroski. Review of Graph Databases for Big Data Dynamic Entity Scoring. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1132027.
Der volle Inhalt der Quelle