Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Graph-Based Recommendation Systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graph-Based Recommendation Systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Graph-Based Recommendation Systems"
Pandey, Vivek, und Padma Bonde. „Graph based Recommendation for Distributed Systems“. International Journal of Computer Applications 168, Nr. 4 (15.06.2017): 41–43. http://dx.doi.org/10.5120/ijca2017914376.
Der volle Inhalt der QuelleYe, Yutao. „An overview of knowledge graph-based recommendation systems“. Applied and Computational Engineering 73, Nr. 1 (05.07.2024): 57–68. http://dx.doi.org/10.54254/2755-2721/73/20240363.
Der volle Inhalt der QuelleKhanna, Dhairya, Rishabh Bhushan, Khushboo Goel und Dr Sudha Narang. „Recommendation Systems using Graph Neural Networks“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 1 (31.01.2023): 448–51. http://dx.doi.org/10.22214/ijraset.2023.48539.
Der volle Inhalt der QuelleLu, Heng, und Ziwei Chen. „SocialJGCF: Social Recommendation with Jacobi Polynomial-Based Graph Collaborative Filtering“. Applied Sciences 14, Nr. 24 (23.12.2024): 12070. https://doi.org/10.3390/app142412070.
Der volle Inhalt der QuellePan, Zhiqiang, Fei Cai, Wanyu Chen und Honghui Chen. „Graph Co-Attentive Session-based Recommendation“. ACM Transactions on Information Systems 40, Nr. 4 (31.10.2022): 1–31. http://dx.doi.org/10.1145/3486711.
Der volle Inhalt der QuelleRen, Jiangtao, Jiawei Long und Zhikang Xu. „Financial news recommendation based on graph embeddings“. Decision Support Systems 125 (Oktober 2019): 113115. http://dx.doi.org/10.1016/j.dss.2019.113115.
Der volle Inhalt der QuelleTolety, Venkata Bhanu Prasad, und Evani Venkateswara Prasad. „Graph Neural Networks for E-Learning Recommendation Systems“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 9s (31.08.2023): 43–50. http://dx.doi.org/10.17762/ijritcc.v11i9s.7395.
Der volle Inhalt der QuelleBi, Zhongqin, Lina Jing, Meijing Shan, Shuming Dou und Shiyang Wang. „Hierarchical Social Recommendation Model Based on a Graph Neural Network“. Wireless Communications and Mobile Computing 2021 (31.08.2021): 1–10. http://dx.doi.org/10.1155/2021/9107718.
Der volle Inhalt der QuelleHuang, Xiaoli, Junjie Wang und Junying Cui. „A Personalized Collaborative Filtering Recommendation System Based on Bi-Graph Embedding and Causal Reasoning“. Entropy 26, Nr. 5 (28.04.2024): 371. http://dx.doi.org/10.3390/e26050371.
Der volle Inhalt der QuelleNie, Na. „Research on Personalized Recommendation Algorithm of Internet Platform Goods Based on Knowledge Graph“. Highlights in Science, Engineering and Technology 56 (14.07.2023): 415–22. http://dx.doi.org/10.54097/hset.v56i.10704.
Der volle Inhalt der QuelleDissertationen zum Thema "Graph-Based Recommendation Systems"
Huang, Zan. „GRAPH-BASED ANALYSIS FOR E-COMMERCE RECOMMENDATION“. Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1167%5F1%5Fm.pdf&type=application/pdf.
Der volle Inhalt der QuelleOzturk, Gizem. „A Hybrid Veideo Recommendation System Based On A Graph Based Algorithm“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612624/index.pdf.
Der volle Inhalt der QuelleBereczki, Márk. „Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Der volle Inhalt der QuelleRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
Attolou, Hervé-Madelein. „Explications pour des recommandations manquantes basées sur les graphes“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1337.
Der volle Inhalt der QuelleIn the era of big data, Recommendation Systems play a pivotal role in helping users navigate and discover relevant content from vast amounts of data. Whilemodern Recommendation Systems have evolved to provide accurate and relevant recommendations, they often fall short in explaining their decisions to users. Thislack of transparency raises important questions about trust and user engagement, especially in cases where certain expected items are not recommended. To addressthis, recent research has focused on developing explainable Recommendation Systems, which provide users with insights into why certain items are recommended oromitted.This thesis explores the specific area of Why-Not Explanations, which focuses on explaining why certain items are missing from the recommendation list. Theneed for Why-Not Explanations is particularly crucial in complex recommendation scenarios, where the absence of certain recommendations can lead to user dissatisfaction or mistrust. For instance, a user on an e-commerce platform might wonder why a specific product was not recommended despite fulfilling certain criteria. By providing explanations for missing recommendations, we aim to improve transparency, user satisfaction, engagement, and the overall trustworthiness of the system.The main contribution of this thesis is the development of EMiGRe (Explainable Missing Graph REcommender), a novel framework that provides actionable Why-Not Explanations for graph-based Recommendation Systems. Unlike traditional explainability methods, which focus on justifying why certain items were recommended, EMiGRe focuses on the absence of specific items from recommendation lists. The framework operates by analyzing the user's interactions within a Heterogeneous Information Graph (HIN) modelization of a dataset, identifying key actions or relations that, when modified, would have led to the recommendation of the missing item. EMiGRe provides two modes for explanation:• Remove Mode identifies existing actions or interactions that are preventing the system from recommending the desired item and suggests removing these.• Add Mode suggests additional actions or items that, if interacted with, would trigger the recommendation of the missing item.To generate explanations in both Add and Remove modes, we explore the solution space using a set of heuristics tailored for specific objectives. The framework offers multiple heuristics each serving a purpose: Incremental Powerset an Exhaustive Comparison . The Incremental heuristic prioritizes faster computation by gradually increasing the set of selected items, potentially overlooking minimal explanations. In contrast, the Powerset heuristic aims to find smaller explanations by thoroughly searching the solution space. Additionally, Exhaustive Comparison comparison heuristic is included to assess the precise contribution of each neighbor to the Why-Not Item (W NI) compared to all other items, increasing the success rate.To validate the effectiveness of the EMiGRe framework, extensive experimental evaluations were conducted on both synthetic and real-world datasets. The datasets include datasets from sources like Amazon, which simulates a real-world e-commerce scenario, and the Food dataset representing a recommendation problemin a recipe-based platform. The experimental results show that EMiGRe is able to provide good-quality Why-Not Explanations. Specifically, the system demonstratesan improvement in explanation success rates compared to traditional brute-force methods, while maintaining acceptable explanation size and processing time.Moreover, this thesis introduces a novel evaluation for Why-Not Explanations, defining metrics such as success rate, explanation size, and processing time to measure the quality and efficiency of explanations
Lisena, Pasquale. „Knowledge-based music recommendation : models, algorithms and exploratory search“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS614.
Der volle Inhalt der QuelleRepresenting the information about music is a complex activity that involves different sub-tasks. This thesis manuscript mostly focuses on classical music, researching how to represent and exploit its information. The main goal is the investigation of strategies of knowledge representation and discovery applied to classical music, involving subjects such as Knowledge-Base population, metadata prediction, and recommender systems. We propose a complete workflow for the management of music metadata using Semantic Web technologies. We introduce a specialised ontology and a set of controlled vocabularies for the different concepts specific to music. Then, we present an approach for converting data, in order to go beyond the librarian practice currently in use, relying on mapping rules and interlinking with controlled vocabularies. Finally, we show how these data can be exploited. In particular, we study approaches based on embeddings computed on structured metadata, titles, and symbolic music for ranking and recommending music. Several demo applications have been realised for testing the previous approaches and resources
„Graph-based recommendation with label propagation“. 2011. http://library.cuhk.edu.hk/record=b5894820.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 97-110).
Abstracts in English and Chinese.
Abstract --- p.ii
Acknowledgement --- p.vi
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Overview --- p.1
Chapter 1.2 --- Motivations --- p.6
Chapter 1.3 --- Contributions --- p.9
Chapter 1.4 --- Organizations of This Thesis --- p.11
Chapter 2 --- Background --- p.14
Chapter 2.1 --- Label Propagation Learning Framework --- p.14
Chapter 2.1.1 --- Graph-based Semi-supervised Learning --- p.14
Chapter 2.1.2 --- Green's Function Learning Framework --- p.16
Chapter 2.2 --- Recommendation Methods --- p.19
Chapter 2.2.1 --- Traditional Memory-based Methods --- p.19
Chapter 2.2.2 --- Traditional Model-based Methods --- p.20
Chapter 2.2.3 --- Label Propagation Recommendation Models --- p.22
Chapter 2.2.4 --- Latent Feature Recommendation Models . --- p.24
Chapter 2.2.5 --- Social Recommendation Models --- p.25
Chapter 2.2.6 --- Tag-based Recommendation Models --- p.25
Chapter 3 --- Recommendation with Latent Features --- p.28
Chapter 3.1 --- Motivation and Contributions --- p.28
Chapter 3.2 --- Item Graph --- p.30
Chapter 3.2.1 --- Item Graph Definition --- p.30
Chapter 3.2.2 --- Item Graph Construction --- p.31
Chapter 3.3 --- Label Propagation Recommendation Model with Latent Features --- p.33
Chapter 3.3.1 --- Latent Feature Analysis --- p.33
Chapter 3.3.2 --- Probabilistic Matrix Factorization --- p.35
Chapter 3.3.3 --- Similarity Consistency Between Global and Local Views (SCGL) --- p.39
Chapter 3.3.4 --- Item-based Green's Function Recommendation Based on SCGL --- p.41
Chapter 3.4 --- Experiments --- p.41
Chapter 3.4.1 --- Dataset --- p.43
Chapter 3.4.2 --- Baseline Methods --- p.43
Chapter 3.4.3 --- Metrics --- p.45
Chapter 3.4.4 --- Experimental Procedure --- p.45
Chapter 3.4.5 --- Impact of Weight Parameter u --- p.46
Chapter 3.4.6 --- Performance Comparison --- p.48
Chapter 3.5 --- Summary --- p.50
Chapter 4 --- Recommendation with Social Network --- p.51
Chapter 4.1 --- Limitation and Contributions --- p.51
Chapter 4.2 --- A Social Recommendation Framework --- p.55
Chapter 4.2.1 --- Social Network --- p.55
Chapter 4.2.2 --- User Graph --- p.57
Chapter 4.2.3 --- Social-User Graph --- p.59
Chapter 4.3 --- Experimental Analysis --- p.60
Chapter 4.3.1 --- Dataset --- p.61
Chapter 4.3.2 --- Metrics --- p.63
Chapter 4.3.3 --- Experiment Setting --- p.64
Chapter 4.3.4 --- Impact of Control Parameter u --- p.65
Chapter 4.3.5 --- Performance Comparison --- p.67
Chapter 4.4 --- Summary --- p.69
Chapter 5 --- Recommendation with Tags --- p.71
Chapter 5.1 --- Limitation and Contributions --- p.71
Chapter 5.2 --- Tag-Based User Modeling --- p.75
Chapter 5.2.1 --- Tag Preference --- p.75
Chapter 5.2.2 --- Tag Relevance --- p.78
Chapter 5.2.3 --- User Interest Similarity --- p.80
Chapter 5.3 --- Tag-Based Label Propagation Recommendation --- p.83
Chapter 5.4 --- Experimental Analysis --- p.84
Chapter 5.4.1 --- Douban Dataset --- p.85
Chapter 5.4.2 --- Experiment Setting --- p.86
Chapter 5.4.3 --- Metrics --- p.87
Chapter 5.4.4 --- Impact of Tag and Rating --- p.88
Chapter 5.4.5 --- Performance Comparison --- p.90
Chapter 5.5 --- Summary --- p.92
Chapter 6 --- Conclusions and Future Work --- p.94
Chapter 6.0.1 --- Conclusions --- p.94
Chapter 6.0.2 --- Future Work --- p.96
Bibliography --- p.97
Silva, Ricardo Manuel Gonçalves da. „Knowledge Graph-Based Recipe Recommendation System“. Master's thesis, 2020. https://hdl.handle.net/10216/132659.
Der volle Inhalt der QuelleSilva, Ricardo Manuel Gonçalves da. „Knowledge Graph-Based Recipe Recommendation System“. Dissertação, 2020. https://hdl.handle.net/10216/132659.
Der volle Inhalt der QuelleSalamat, Amirreza. „Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization“. Thesis, 2020. http://hdl.handle.net/1805/24769.
Der volle Inhalt der QuelleResearch on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
(9740444), Amirreza Salamat. „Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization“. Thesis, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Graph-Based Recommendation Systems"
Padmaja, B., G. Sucharitha und E. Krishna Rao Patro. „KGRecSys: Knowledge graph-based recommendation systems“. In Artificial Intelligence Technologies for Engineering Applications, 261–82. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003565529-18.
Der volle Inhalt der QuelleYe, Wenwen, Zheng Qin, Zhuoye Ding und Dawei Yin. „Game Recommendation Based on Dynamic Graph Convolutional Network“. In Database Systems for Advanced Applications, 335–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59410-7_24.
Der volle Inhalt der QuelleXie, Min, Hongzhi Yin, Fanjiang Xu, Hao Wang und Xiaofang Zhou. „Graph-Based Metric Embedding for Next POI Recommendation“. In Web Information Systems Engineering – WISE 2016, 207–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48743-4_17.
Der volle Inhalt der QuelleKurt, Zühal, Ömer Nezih Gerek, Alper Bilge und Kemal Özkan. „A Multi Source Graph-Based Hybrid Recommendation Algorithm“. In Trends in Data Engineering Methods for Intelligent Systems, 280–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79357-9_28.
Der volle Inhalt der QuelleFeng, Siling, Xunyang Ji und Mengxing Huang. „Design of Trademark Recommendation System Based on Knowledge Graph“. In Web Information Systems and Applications, 143–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20309-1_13.
Der volle Inhalt der QuelleWang, Dongjing, Shuiguang Deng und Guandong Xu. „GEMRec: A Graph-Based Emotion-Aware Music Recommendation Approach“. In Web Information Systems Engineering – WISE 2016, 92–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48740-3_7.
Der volle Inhalt der QuelleWang, Huiying, Yue Kou, Derong Shen und Tiezheng Nie. „An Explainable Recommendation Method Based on Multi-timeslice Graph Embedding“. In Web Information Systems and Applications, 84–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60029-7_8.
Der volle Inhalt der QuelleRen, Yang, Xiaoming Wang, Guangyao Pang, Yaguang Lin und Pengfei Wan. „Dual Attention Network Based on Knowledge Graph for News Recommendation“. In Wireless Algorithms, Systems, and Applications, 364–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85928-2_29.
Der volle Inhalt der QuelleWang, YuBin, SiYao Gao, WeiPeng Li, TingXu Jiang und SiYing Yu. „Research and Application of Personalized Recommendation Based on Knowledge Graph“. In Web Information Systems and Applications, 383–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87571-8_33.
Der volle Inhalt der QuelleMunna, Tahsir Ahmed, und Radhakrishnan Delhibabu. „Cross-Domain Co-Author Recommendation Based on Knowledge Graph Clustering“. In Intelligent Information and Database Systems, 782–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73280-6_62.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Graph-Based Recommendation Systems"
Özlü, Özgür Anıl, Günce Keziban Orman und Sultan N. Turhan. „Exploring Graph-Based Techniques in Job Recommendation Systems“. In 2024 IEEE 12th International Conference on Intelligent Systems (IS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/is61756.2024.10705169.
Der volle Inhalt der QuelleShao, Bo, Zhichun Jia, Hongda Wang, Yiwen Wang, Xiyu Zhang und Xing Xing. „Sequential POI Recommendation Based on Graph Neural Networks“. In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 321–26. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606607.
Der volle Inhalt der QuelleLei, Fei, Qian Cao, Xiaofeng Wang und Dun Ao. „SentiGCN: Graph Contrastive Learning for Recommendation Based on Sentiment Analysis“. In 2024 12th International Conference on Information Systems and Computing Technology (ISCTech), 1–6. IEEE, 2024. https://doi.org/10.1109/isctech63666.2024.10845409.
Der volle Inhalt der QuelleSun, Tianhao, Xiaodong Zhang, Yanke Chen, Huhai Zou und Quanwang Wu. „A Multi-Level Contrastive Learning Framework for Knowledge Graph-Based Recommendation Systems“. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 456–62. IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10831511.
Der volle Inhalt der QuelleWang, Tianci, Yantong Lai, Yiyuan Wang und Ji Xang. „Adaptive Graph-Based Uncertain Trajectory Data Augmentation Network for Next POI Recommendation“. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 4724–29. IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10831939.
Der volle Inhalt der QuelleLi, Sumin, Jiaming Hou, Xiuqin Pan und Yijin Gang. „A Study of Recommendation Algorithm Based on Graph Transformer and Contrastive Learning“. In 2024 12th International Conference on Information Systems and Computing Technology (ISCTech), 1–6. IEEE, 2024. https://doi.org/10.1109/isctech63666.2024.10845540.
Der volle Inhalt der QuelleLi, Yunhan, Chunyan An, Conghao Yang und Mingyuan Wang. „Enhancing Session-Based Recommendation via Inter-Session Similar Intent Modeling and Graph Neural Networks“. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 944–51. IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10831110.
Der volle Inhalt der QuelleLi, Huan, Senpeng Chen, Wenhong Wei, Ani Dong und Qingxia Li. „Self-Attention Residual Connection and Graph Neural Hawkes Bilayer Model for Session-Based Recommendation“. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2870–75. IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10832107.
Der volle Inhalt der QuelleEisert, Kilian, Maximilian Krähschütz und Viet The Nguyen. „A Graph Neural Network-Based Recommendation System for Product Manufacturing Information in 3D-CAD Models“. In 2024 IEEE 12th International Conference on Intelligent Systems (IS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/is61756.2024.10705200.
Der volle Inhalt der QuelleLong, Hua, Jiaqiang Lu und BingWen Huang. „Integrating Graph Neural Networks with Multi-Head Attention for Multi-Task Learning in Session-Based Recommendation“. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3013–18. IEEE, 2024. https://doi.org/10.1109/smc54092.2024.10831897.
Der volle Inhalt der Quelle