Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Graph-based input representation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graph-based input representation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Graph-based input representation"
Lu, Fangbo, Zhihao Zhang und Changsheng Shui. „Online trajectory anomaly detection model based on graph neural networks and variational autoencoder“. Journal of Physics: Conference Series 2816, Nr. 1 (01.08.2024): 012006. http://dx.doi.org/10.1088/1742-6596/2816/1/012006.
Der volle Inhalt der QuelleYu, Xingtong, Zemin Liu, Yuan Fang und Xinming Zhang. „Learning to Count Isomorphisms with Graph Neural Networks“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 4 (26.06.2023): 4845–53. http://dx.doi.org/10.1609/aaai.v37i4.25610.
Der volle Inhalt der QuelleBauer, Daniel. „Understanding Descriptions of Visual Scenes Using Graph Grammars“. Proceedings of the AAAI Conference on Artificial Intelligence 27, Nr. 1 (29.06.2013): 1656–57. http://dx.doi.org/10.1609/aaai.v27i1.8498.
Der volle Inhalt der QuelleWu, Xinyue, und Huilin Chen. „Augmented Feature Diffusion on Sparsely Sampled Subgraph“. Electronics 13, Nr. 16 (15.08.2024): 3249. http://dx.doi.org/10.3390/electronics13163249.
Der volle Inhalt der QuelleCooray, Thilini, und Ngai-Man Cheung. „Graph-Wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 6 (28.06.2022): 6420–28. http://dx.doi.org/10.1609/aaai.v36i6.20593.
Der volle Inhalt der QuelleGildea, Daniel, Giorgio Satta und Xiaochang Peng. „Ordered Tree Decomposition for HRG Rule Extraction“. Computational Linguistics 45, Nr. 2 (Juni 2019): 339–79. http://dx.doi.org/10.1162/coli_a_00350.
Der volle Inhalt der QuelleMiao, Fengyu, Xiuzhuang Zhou, Shungen Xiao und Shiliang Zhang. „A Graph Similarity Algorithm Based on Graph Partitioning and Attention Mechanism“. Electronics 13, Nr. 19 (25.09.2024): 3794. http://dx.doi.org/10.3390/electronics13193794.
Der volle Inhalt der QuelleCoşkun, Kemal Çağlar, Muhammad Hassan und Rolf Drechsler. „Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits“. Chips 1, Nr. 1 (13.06.2022): 54–71. http://dx.doi.org/10.3390/chips1010006.
Der volle Inhalt der QuelleZhang, Dong, Suzhong Wei, Shoushan Li, Hanqian Wu, Qiaoming Zhu und Guodong Zhou. „Multi-modal Graph Fusion for Named Entity Recognition with Targeted Visual Guidance“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 16 (18.05.2021): 14347–55. http://dx.doi.org/10.1609/aaai.v35i16.17687.
Der volle Inhalt der QuelleRen, Min, Yunlong Wang, Zhenan Sun und Tieniu Tan. „Dynamic Graph Representation for Occlusion Handling in Biometrics“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 07 (03.04.2020): 11940–47. http://dx.doi.org/10.1609/aaai.v34i07.6869.
Der volle Inhalt der QuelleDissertationen zum Thema "Graph-based input representation"
Agarwal, Navneet. „Autοmated depressiοn level estimatiοn : a study οn discοurse structure, input representatiοn and clinical reliability“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC215.
Der volle Inhalt der QuelleGiven the severe and widespread impact of depression, significant research initiatives have been undertaken to define systems for automated depression assessment. The research presented in this dissertation revolves around the following questions that remain relatively unexplored despite their relevance within automated depression assessment domain; (1) the role of discourse structure in mental health analysis, (2) the relevance of input representation towards the predictive abilities of neural network models, and (3) the importance of domain expertise in automated depression detection.The dyadic nature of patient-therapist interviews ensures the presence of a complex underlying structure within the discourse. Within this thesis, we first establish the importance of therapist questions within the neural network model's input, before showing that a sequential combination of patient and therapist input is a sub-optimal strategy. Consequently, Multi-view architectures are proposed as a means of incorporating the discourse structure within the learning process of neural networks. Experimental results with two different text encodings show the advantages of the proposed multi-view architectures, validating the relevance of retaining discourse structure within the model's training process.Having established the need to retain the discourse structure within the learning process, we further explore graph based text representations. The research conducted in this context highlights the impact of input representations not only in defining the learning abilities of the model, but also in understanding their predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are used to exemplify the ability of graphical representations to provide varying perspectives of the same input, highlighting information that can not only improve the predictive performance of the models but can also be relevant for medical professionals. Multi-view concept is also incorporated within the two graph structures to further highlight the difference in the perspectives of the patient and the therapist within the same interview. Furthermore, it is shown that visualization of the proposed graph structures can provide valuable insights indicative of subtle changes in patient and therapist's behavior, hinting towards the mental state of the patient.Finally, we highlight the lack of involvement of medical professionals within the context of automated depression detection based on clinical interviews. As part of this thesis, clinical annotations of the DAIC-WOZ dataset were performed to provide a resource for conducting interdisciplinary research in this field. Experiments are defined to study the integration of the clinical annotations within the neural network models applied to symptom-level prediction task within the automated depression detection domain. Furthermore, the proposed models are analyzed in the context of the clinical annotations to analogize their predictive process and psychological tendencies with those of medical professionals, a step towards establishing them as reliable clinical tools
Buchteile zum Thema "Graph-based input representation"
Jagan, Balaji, Ranjani Parthasarathi und Geetha T. V. „Graph-Based Abstractive Summarization“. In Innovations, Developments, and Applications of Semantic Web and Information Systems, 236–61. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5042-6.ch009.
Der volle Inhalt der QuelleKumar, P. Krishna, und Harish G. Ramaswamy. „Graph Classification with GNNs: Optimisation, Representation & Inductive Bias“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240726.
Der volle Inhalt der QuelleToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. „QSPR/QSAR Analyses by Means of the CORAL Software“. In Pharmaceutical Sciences, 929–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch036.
Der volle Inhalt der QuelleToropov, Andrey A., Alla P. Toropova, Emilio Benfenati, Orazio Nicolotti, Angelo Carotti, Karel Nesmerak, Aleksandar M. Veselinović et al. „QSPR/QSAR Analyses by Means of the CORAL Software“. In Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 560–85. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch015.
Der volle Inhalt der QuelleZhang, Taolin, Dongyang Li, Qizhou Chen, Chengyu Wang, Longtao Huang, Hui Xue, Xiaofeng He und Jun Huang. „R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240755.
Der volle Inhalt der QuelleYang, Zixuan, Xiao Wang, Yanhua Yu, Yuling Wang, Kangkang Lu, Zirui Guo, Xiting Qin, Yunshan Ma und Tat-Seng Chua. „Hop-based Heterogeneous Graph Transformer“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240759.
Der volle Inhalt der QuelleOmerovic, Aida, Amela Karahasanovic und Ketil Stølen. „Uncertainty Handling in Weighted Dependency Trees“. In Dependability and Computer Engineering, 381–416. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-747-0.ch016.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Graph-based input representation"
Morris, Matthew, David J. Tena Cucala, Bernardo Cuenca Grau und Ian Horrocks. „Relational Graph Convolutional Networks Do Not Learn Sound Rules“. In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 897–908. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/84.
Der volle Inhalt der QuelleGuo, Zhichun, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G. Iyer, Yihong Ma, Olaf Wiest et al. „Graph-based Molecular Representation Learning“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/744.
Der volle Inhalt der QuelleJin, Ming, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou und Shirui Pan. „Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/204.
Der volle Inhalt der QuelleJin, Di, Luzhi Wang, Yizhen Zheng, Xiang Li, Fei Jiang, Wei Lin und Shirui Pan. „CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/292.
Der volle Inhalt der QuelleGuan, Sheng, Hanchao Ma und Yinghui Wu. „RoboGNN: Robustifying Node Classification under Link Perturbation“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/420.
Der volle Inhalt der QuelleAhmetaj, Shqiponja, Robert David, Magdalena Ortiz, Axel Polleres, Bojken Shehu und Mantas Šimkus. „Reasoning about Explanations for Non-validation in SHACL“. In 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/2.
Der volle Inhalt der QuelleLi, Zuchao, Xingyi Guo, Letian Peng, Lefei Zhang und Hai Zhao. „iRe2f: Rethinking Effective Refinement in Language Structure Prediction via Efficient Iterative Retrospecting and Reasoning“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/570.
Der volle Inhalt der QuelleFan, Zhihao, Zhongyu Wei, Siyuan Wang, Ruize Wang, Zejun Li, Haijun Shan und Xuanjing Huang. „TCIC: Theme Concepts Learning Cross Language and Vision for Image Captioning“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/91.
Der volle Inhalt der QuelleSun, Tien-Lung, Chuan-Jun Su, Richard J. Mayer und Richard A. Wysk. „Shape Similarity Assessment of Mechanical Parts Based on Solid Models“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0234.
Der volle Inhalt der QuelleMiller, Michael G., James L. Mathieson, Joshua D. Summers und Gregory M. Mocko. „Representation: Structural Complexity of Assemblies to Create Neural Network Based Assembly Time Estimation Models“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71337.
Der volle Inhalt der Quelle