Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Graph algorithmic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graph algorithmic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Graph algorithmic"
Möhring, Rolf H. „Algorithmic graph theory and perfect graphs“. Order 3, Nr. 2 (Juni 1986): 207–8. http://dx.doi.org/10.1007/bf00390110.
Der volle Inhalt der QuelleWilson, B. J. „ALGORITHMIC GRAPH THEORY“. Bulletin of the London Mathematical Society 18, Nr. 6 (November 1986): 630–31. http://dx.doi.org/10.1112/blms/18.6.630.
Der volle Inhalt der QuelleChen, Jianer. „Algorithmic graph embeddings“. Theoretical Computer Science 181, Nr. 2 (Juli 1997): 247–66. http://dx.doi.org/10.1016/s0304-3975(96)00273-3.
Der volle Inhalt der Quellede Werra, D. „Algorithmic graph theory“. European Journal of Operational Research 26, Nr. 1 (Juli 1986): 179. http://dx.doi.org/10.1016/0377-2217(86)90177-3.
Der volle Inhalt der QuelleLavrik, V. N. „Graph algorithmic algebra“. Cybernetics 24, Nr. 5 (September 1988): 548–54. http://dx.doi.org/10.1007/bf01255666.
Der volle Inhalt der QuelleKHOUSSAINOV, BAKHADYR, JIAMOU LIU und MIA MINNES. „Unary automatic graphs: an algorithmic perspective“. Mathematical Structures in Computer Science 19, Nr. 1 (Februar 2009): 133–52. http://dx.doi.org/10.1017/s0960129508007342.
Der volle Inhalt der QuelleBakonyi, Mihály, und Erik M. Varness. „Algorithmic aspects of bipartite graphs“. International Journal of Mathematics and Mathematical Sciences 18, Nr. 2 (1995): 299–304. http://dx.doi.org/10.1155/s0161171295000378.
Der volle Inhalt der QuelleKorpelainen, Nicholas, Vadim V. Lozin, Dmitriy S. Malyshev und Alexander Tiskin. „Boundary properties of graphs for algorithmic graph problems“. Theoretical Computer Science 412, Nr. 29 (Juli 2011): 3545–54. http://dx.doi.org/10.1016/j.tcs.2011.03.001.
Der volle Inhalt der QuelleCicerone, Serafino, und Gabriele Di Stefano. „Getting new algorithmic results by extending distance-hereditary graphs via split composition“. PeerJ Computer Science 7 (07.07.2021): e627. http://dx.doi.org/10.7717/peerj-cs.627.
Der volle Inhalt der QuelleKhalid Hamad Alnafisah, Khalid Hamad Alnafisah. „An Algorithmic Solution for the “Hair Ball” Problem in Data Visualization“. Journal of engineering sciences and information technology 2, Nr. 4 (30.12.2018): 86–66. http://dx.doi.org/10.26389/ajsrp.k220918.
Der volle Inhalt der QuelleDissertationen zum Thema "Graph algorithmic"
Bessy, Stéphane. „Some problems in graph theory and graphs algorithmic theory“. Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00806716.
Der volle Inhalt der QuelleKanté, Mamadou Moustapha. „Graph structurings : some algorithmic applications“. Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13693/document.
Der volle Inhalt der QuelleEvery property definable in onadic second order logic can be checked in polynomial-time on graph classes of bounded clique-width. Clique-width is a graph parameter defined in an algebraical way, i.e., with operations ``concatenating graphs'' and that generalize concatenation of words.Rank-width, defined in a combinatorial way, is equivalent to the clique-width of undirected graphs. We give an algebraic characterization of rank-width and we show that rank-width is linearly bounded in term of tree-width. We also propose a notion of ``rank-width'' of directed graphs and a vertex-minor inclusion for directed graphs. We show that directed graphs of bounded ``rank-width'' are characterized by a finite list of finite directed graphs to exclude as vertex-minor. Many graph classes do not have bounded rank-width, e.g., planar graphs. We are interested in labeling schemes on these graph classes. A labeling scheme for a property P in a graph G consists in assigning a label, as short as possible, to each vertex of G and such that we can verify if G satisfies P by just looking at the labels. We show that every property definable in first order logic admit labeling schemes with labels of logarithmic size on certain graph classes that have bounded local clique-width. Bounded degree graph classes, minor closed classes of graphs that exclude an apex graph as a minor have bounded local clique-width. If x and y are two vertices and X is a subset of the set of vertices and Y is a subset of the set of edges, we let Conn(x,y,X,Y) be the graph property x and y are connected by a path that avoids the vertices in X and the edges in Y. This property is not definable by a first order formula. We show that it admits a labeling scheme with labels of logarithmic size on planar graphs. We also show that Conn(x,y,X,0) admits short labeling schemes with labels of logarithmic size on graph classes that are ``planar gluings'' of graphs of small clique-width and with limited overlaps
Rocha, Leonardo Sampaio. „Algorithmic aspects of graph colouring heuristics“. Nice, 2012. https://tel.archives-ouvertes.fr/tel-00759408.
Der volle Inhalt der QuelleA proper coloring of a graph is a function that assigns a color to each vertex with the restriction that adjacent vertices are assigned with distinct colors. Proper colorings are a natural model for many problems, like scheduling, frequency assignment and register allocation. The problem of finding a proper coloring of a graph with the minimum number of colors is a well-known NP-hard problem. In this thesis we study the Grundy number and the b-chromatic number of graphs, two parameters that evaluate some heuristics for finding proper colorings. We start by giving the state of the art of the results about these parameters. Then, we show that the problem of determining the Grundy Number of bipartite or chordal graphs is NP-hard, but it is solvable in polynomial time for P5-free bipartite graphs. After, we show that the problem of determining the b-chromatic number or a chordal distance-hereditary graph is NP-hard, and we give polynomial-time algorithms for some subclasses of block graphs, complement of bipartite graphs and p4-sparse graphs. We also consider the fixed-parameter tractability of determining the Grundy number and the b-chromatic number, and in particular we show that deciding if the Grundy number (or the b-chromatic number) of a graph G is at least V(G)-k admits an FPT algorithm when k is the parameter. Finally, we consider the computational complexity of many problems related to comparing the b-chromatic number and the Grundy number with various other related parameter of a graph
De, Lara Nathan. „Algorithmic and software contributions to graph mining“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT029.
Der volle Inhalt der QuelleSince the introduction of Google's PageRank method for Web searches in the late 1990s, graph algorithms have been part of our daily lives. In the mid 2000s, the arrival of social networks has amplified this phenomenon, creating new use-cases for these algorithms. Relationships between entities can be of multiple types: user-user symmetric relationships for Facebook or LinkedIn, follower-followee asymmetric ones for Twitter or even user-content bipartite ones for Netflix or Amazon. They all come with their own challenges and the applications are numerous: centrality calculus for influence measurement, node clustering for knowledge discovery, node classification for recommendation or embedding for link prediction, to name a few.In the meantime, the context in which graph algorithms are applied has rapidly become more constrained. On the one hand, the increasing size of the datasets with millions of entities, and sometimes billions of relationships, bounds the asymptotic complexity of the algorithms for industrial applications. On the other hand, as these algorithms affect our daily lives, there is a growing demand for explanability and fairness in the domain of artificial intelligence in general. Graph mining is no exception. For example, the European Union has published a set of ethics guidelines for trustworthy AI. This calls for further analysis of the current models and even new ones.This thesis provides specific answers via a novel analysis of not only standard, but also extensions, variants, and original graph algorithms. Scalability is taken into account every step of the way. Following what the Scikit-learn project does for standard machine learning, we deem important to make these algorithms available to as many people as possible and participate in graph mining popularization. Therefore, we have developed an open-source software, Scikit-network, which implements and documents the algorithms in a simple and efficient way. With this tool, we cover several areas of graph mining such as graph embedding, clustering, and semi-supervised node classification
Wolff, Tanya Layng. „Cayley networks, group, graph theoretic and algorithmic properties“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq22426.pdf.
Der volle Inhalt der QuelleTamura, Takeyuki. „Graph Algorithmic Approaches for Structure Inferences in Bioinformatics“. 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/68893.
Der volle Inhalt der QuelleJaeger, Mordechai. „An algorithmic approach to center location and related problems“. Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185767.
Der volle Inhalt der QuellePandey, Arti. „Algorithmic aspects of domination and its variations“. Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7038.
Der volle Inhalt der QuelleThiebaut, Jocelyn. „Algorithmic and structural results on directed cycles in dense digraphs“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS059.
Der volle Inhalt der QuelleIn this thesis, we are interested in some algorithmic and structural problems of (oriented) cycle packing in dense digraphs. These problems are mainly motivated by understanding the structure of such graphs, but also because many algorithmic problems are easy (i.e. resolvable in polynomial time) on acyclic digraphs while they are NP-difficult in the general case.More specifically, we first study the packing of cycles and the packing of triangles in tournaments. These problems are the two dual problems (from a linear programming point of view) of feedback arc/vertex set that have received a lot of attention in literature. Among other things, we show that there is no polynomial algorithm to find a maximum collection of cycles (respectively triangles) vertex or arc-disjoint in tournaments, unless P = NP. We are also interested in algorithms of approximations and parameterized complexity of these different problems.Then, we study these problems in the specific case where the tournament admits a feedback arc set which is a matching. Such tournaments are said to be sparse. Surprisingly, the problem remains difficult in the case of vertex-disjoint triangles, but the packing of triangles and the packing of arc-disjoint cycles become polynomial. Thus, we explore the approximation and parameterized complexity of the vertex-disjoint case in sparse tournaments.Finally, we answer positively to a structural conjecture on k-regular bipartite tournaments by Manoussakis, Song and Zhang from 1994. Indeed, we show that all digraphs of this non-isomorphic class to a particular digraph have for every p even with 4 leq p leq |V(D)| - 4 a C cycle of size p such that D V(C) is Hamiltonian
Kalzi, Hasan. „Graph Complexity Based on a Heuristic That Involves the Algorithmic Complexity Behaviour of Multiplex Networks on Graphs“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302104.
Der volle Inhalt der QuelleEftersom problemet med att bestämma komplexiteten hos flerfaldiga nätverk är ett NP-svårt problem, bestämde jag mig för att beräkna komplexiteten hos grafer med hjälp av heuristik. Jag är den första på den här vägen som gjorde den här typen av beräkningar. Jag ville alltid definiera komplexitet som en matematisk egenskap i diagramstrukturen. Denna uppsats undersöker beteendet hos den algoritmiska komplexiteten av flerfaldiga nätverk i grafer för att upptäcka om det är möjligt att extrahera ett matematiskt uttryck som kan representera det. Om vi får en matematisk representation för grafkomplexitet, hanterar vi detta problem från det NP- hårda problemområdet. Den kan också användas som en av diagrammets egenskaper, såsom antalet noder, kanter eller motiv av en viss storlek. Den algoritmiska komplexiteten av flerfaldiga nätverk definieras av Santoro och Nicosia i deras forskningspapper [1]. Således kan ett tillvägagångssätt som använder en heuristisk strategi vara det enklaste sättet att komma nära en optimal matematisk definition av komplexiteten i grafer. I denna avhandling introducerar jag den senaste representationen av den algoritmiska komplexiteten [2] för flerfaldiga nätverk ur ett algoritmiskt perspektiv för informationsteori [3]. Denna definition beror främst på Kolmogorov-komplexiteten [4, 5 ]. Jag studerade resultaten av de heuristiska algoritmiska komplexitetsmätningarna på olika och slumpmässiga nätverk som skiljer sig åt i storlek-4-motivnummer. Jag hittade imponerande resultat som visar en logaritmisk trendlinje (eller kanske krafttrendlinje) för den algoritmiska komplexiteten med att öka antalet lager. Den algoritmiska komplexiteten minskar också när antalet motiv ökar. Således kan det finnas en matematisk koppling mellan den algoritmiska komplexiteten, antalet motiv, antalet lager, antalet kanter och antalet noder. Dessutom krävs mer forskning för att undersöka och uppfinna ett matematiskt uttryck mellan dessa egenskaper. Dessutom behövs mer forskning för att hävda riktigheten av dessa slutsatser på andra olika typer av nätverk.
Bücher zum Thema "Graph algorithmic"
Golumbic, Martin Charles. Algorithmic graph theory and perfect graphs. 2. Aufl. Amsterdam: North Holland, 2004.
Den vollen Inhalt der Quelle findenAlgorithmic graph theory. London: Prentice-Hall, 1990.
Den vollen Inhalt der Quelle findenAlgorithmic graph theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Den vollen Inhalt der Quelle findenMcHugh, James A. Algorithmic graph theory. Englewood Cliffs, N.J: Prentice Hall, 1990.
Den vollen Inhalt der Quelle findenGolumbic, Martin Charles. Algorithmic graph theory and perfect graphs. Amsterdam: Elsevier, 2004.
Den vollen Inhalt der Quelle findenNagamochi, Hiroshi. Algorithmic aspects of graph connectivity. New York: Cambridge University Press, 2008.
Den vollen Inhalt der Quelle findenToshihide, Ibaraki, Hrsg. Algorithmic aspects of graph connectivity. New York: Cambridge University Press, 2008.
Den vollen Inhalt der Quelle findenChartrand, G. Applied and algorithmic graph theory. New York: McGraw-Hill, 1993.
Den vollen Inhalt der Quelle findenChartrand, G. Applied and algorithmic graph theory. London: McGraw-Hill, 1993.
Den vollen Inhalt der Quelle findenChartrand, Gary. Applied and algorithmic graph theory. New York: McGraw-Hill, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Graph algorithmic"
Hougardy, Stefan, und Jens Vygen. „Simple Graph Algorithms“. In Algorithmic Mathematics, 85–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39558-6_7.
Der volle Inhalt der QuelleHenning, Michael A., und Jan H. van Vuuren. „Algorithmic complexity“. In Graph and Network Theory, 55–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03857-0_3.
Der volle Inhalt der QuelleChen, Jianer. „Algorithmic graph embeddings“. In Lecture Notes in Computer Science, 151–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0030829.
Der volle Inhalt der QuelleGelfand, Natasha, und Roberto Tamassia. „Algorithmic Patterns for Orthogonal Graph Drawing“. In Graph Drawing, 138–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-37623-2_11.
Der volle Inhalt der QuelleCastelló, R., R. Mili und I. G. Tollis. „An Algorithmic Framework for Visualizing Statecharts“. In Graph Drawing, 139–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44541-2_13.
Der volle Inhalt der QuelleZhang, Zhongyi, und Jiong Guo. „Colorful Graph Coloring“. In Frontiers of Algorithmic Wisdom, 141–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20796-9_11.
Der volle Inhalt der QuelleTaillard, Éric D. „Elements of Graphs and Complexity Theory“. In Design of Heuristic Algorithms for Hard Optimization, 3–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13714-3_1.
Der volle Inhalt der QuelleGrohe, Martin. „Algorithmic Meta Theorems“. In Graph-Theoretic Concepts in Computer Science, 30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92248-3_3.
Der volle Inhalt der QuelleKouroupas, Georgios, Evangelos Markakis, Christos Papadimitriou, Vasileios Rigas und Martha Sideri. „The Web Graph as an Equilibrium“. In Algorithmic Game Theory, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48433-3_16.
Der volle Inhalt der QuelleLin, Tao, und Peter Eades. „Integration of declarative and algorithmic approaches for layout creation“. In Graph Drawing, 376–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58950-3_392.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Graph algorithmic"
Klobas, Nina, und Matjaž Krnc. „Fast Recognition of Some Parametric Graph Families“. In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.7.
Der volle Inhalt der QuelleBei, Xiaohui, Youming Qiao und Shengyu Zhang. „Networked Fairness in Cake Cutting“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/508.
Der volle Inhalt der QuelleBonani, Andrea, Vincenzo Del Fatto, Gabriella Dodero und Rosella Gennari. „Tangibles for Graph Algorithmic Thinking“. In SIGCSE '18: The 49th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159450.3162267.
Der volle Inhalt der QuelleEiben, Eduard, Robert Ganian, Dušan Knop und Sebastian Ordyniak. „Unary Integer Linear Programming with Structural Restrictions“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/179.
Der volle Inhalt der QuelleRehman, Akif, Masab Ahmad und Omer Khan. „Exploring accelerator and parallel graph algorithmic choices for temporal graphs“. In PPoPP '20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3380536.3380540.
Der volle Inhalt der QuelleVajapeyam, Sridhar, und Michael Keefe. „Triangulated Surface Construction From Scattered 3-D Points“. In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0087.
Der volle Inhalt der QuelleGrande, Daniel, Felice Mancini und Pradeep Radhakrishnan. „An Automated Graph Grammar Based Tool to Automatically Generate System Bond Graphs for Dynamic Analysis“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59941.
Der volle Inhalt der QuelleHarshvardhan, Adam Fidel, Nancy M. Amato und Lawrence Rauchwerger. „An Algorithmic Approach to Communication Reduction in Parallel Graph Algorithms“. In 2015 International Conference on Parallel Architecture and Compilation (PACT). IEEE, 2015. http://dx.doi.org/10.1109/pact.2015.34.
Der volle Inhalt der QuelleSchidler, André, und Stefan Szeider. „Computing Twin-width with SAT and Branch & Bound“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/224.
Der volle Inhalt der QuelleBorowiecki, Piotr. „Algorithmic bounds on the chromatic number of a graph“. In 2008 1st International Conference on Information Technology (IT 2008). IEEE, 2008. http://dx.doi.org/10.1109/inftech.2008.4621642.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Graph algorithmic"
Grossman, Max, Howard Porter Pritchard Jr., Zoran Budimlic und Vivek Sarkar. Graph 500 on OpenSHMEM: Using a Practical Survey of Past Work to Motivate Novel Algorithmic Developments. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1338682.
Der volle Inhalt der QuelleHrebeniuk, Bohdan V. Modification of the analytical gamma-algorithm for the flat layout of the graph. [б. в.], Dezember 2018. http://dx.doi.org/10.31812/123456789/2882.
Der volle Inhalt der QuelleParekh, Ojas, Yipu Wang, Yang Ho, Cynthia Phillips, Ali Pinar, James Aimone und William Severa. Neuromorphic Graph Algorithms. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1829422.
Der volle Inhalt der QuelleWerner, Eric, und Jonathan Chu. Graph Algorithms on Future Architectures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada611678.
Der volle Inhalt der QuelleStriuk, Andrii, Olena Rybalchenko und Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4462.
Der volle Inhalt der QuelleMcLendon, William Clarence, III, und Brian Neil Wylie. Graph algorithms in the titan toolkit. Office of Scientific and Technical Information (OSTI), Oktober 2009. http://dx.doi.org/10.2172/1001014.
Der volle Inhalt der QuelleGEORGIA INST OF TECH ATLANTA. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada266033.
Der volle Inhalt der QuelleThomas, Robin. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada271851.
Der volle Inhalt der QuelleGil, Oliver Fernández, und Anni-Yasmin Turhan. Answering Regular Path Queries Under Approximate Semantics in Lightweight Description Logics. Technische Universität Dresden, 2020. http://dx.doi.org/10.25368/2022.261.
Der volle Inhalt der QuellePlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, März 1995. http://dx.doi.org/10.21236/ada292630.
Der volle Inhalt der Quelle