Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Granules RNP“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Granules RNP" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Granules RNP"
Krüger, Timothy, Mario Hofweber und Susanne Kramer. „SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains“. Molecular Biology of the Cell 24, Nr. 13 (Juli 2013): 2098–111. http://dx.doi.org/10.1091/mbc.e13-01-0068.
Der volle Inhalt der QuelleAn, Haiyan, Jing Tong Tan und Tatyana A. Shelkovnikova. „Stress granules regulate stress-induced paraspeckle assembly“. Journal of Cell Biology 218, Nr. 12 (21.10.2019): 4127–40. http://dx.doi.org/10.1083/jcb.201904098.
Der volle Inhalt der QuelleHanazawa, Momoyo, Masafumi Yonetani und Asako Sugimoto. „PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans“. Journal of Cell Biology 192, Nr. 6 (14.03.2011): 929–37. http://dx.doi.org/10.1083/jcb.201010106.
Der volle Inhalt der QuelleDavis, Michael, Andrea Montalbano, Megan P. Wood und Jennifer A. Schisa. „Biphasic adaptation to osmotic stress in the C. elegans germ line“. American Journal of Physiology-Cell Physiology 312, Nr. 6 (01.06.2017): C741—C748. http://dx.doi.org/10.1152/ajpcell.00364.2016.
Der volle Inhalt der QuelleAoki, Scott T., Aaron M. Kershner, Craig A. Bingman, Marvin Wickens und Judith Kimble. „PGL germ granule assembly protein is a base-specific, single-stranded RNase“. Proceedings of the National Academy of Sciences 113, Nr. 5 (19.01.2016): 1279–84. http://dx.doi.org/10.1073/pnas.1524400113.
Der volle Inhalt der QuelleVan Treeck, Briana, David S. W. Protter, Tyler Matheny, Anthony Khong, Christopher D. Link und Roy Parker. „RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome“. Proceedings of the National Academy of Sciences 115, Nr. 11 (26.02.2018): 2734–39. http://dx.doi.org/10.1073/pnas.1800038115.
Der volle Inhalt der QuelleAn, Haiyan, und Tatyana A. Shelkovnikova. „Stress granules regulate paraspeckles: RNP granule continuum at work“. Cell Stress 3, Nr. 12 (09.12.2019): 385–87. http://dx.doi.org/10.15698/cst2019.12.207.
Der volle Inhalt der QuelleNoble, Scott L., Brittany L. Allen, Lai Kuan Goh, Kristen Nordick und Thomas C. Evans. „Maternal mRNAs are regulated by diverse P body–related mRNP granules during early Caenorhabditis elegans development“. Journal of Cell Biology 182, Nr. 3 (11.08.2008): 559–72. http://dx.doi.org/10.1083/jcb.200802128.
Der volle Inhalt der QuelleDe Graeve, Fabienne, und Florence Besse. „Neuronal RNP granules: from physiological to pathological assemblies“. Biological Chemistry 399, Nr. 7 (27.06.2018): 623–35. http://dx.doi.org/10.1515/hsz-2018-0141.
Der volle Inhalt der QuelleCorbet, Giulia Ada, und Roy Parker. „RNP Granule Formation: Lessons from P-Bodies and Stress Granules“. Cold Spring Harbor Symposia on Quantitative Biology 84 (2019): 203–15. http://dx.doi.org/10.1101/sqb.2019.84.040329.
Der volle Inhalt der QuelleDissertationen zum Thema "Granules RNP"
Cid, Samper Fernando 1991. „Computational approaches to characterize RNP granules“. Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/668449.
Der volle Inhalt der QuelleLos gránulos ribonucleoproteicos (gránulos RNP, por sus siglas en inglés) son complejos producidos mediante separación líquido-líquido y están constituidos principalmente por proteínas y ARN. Son responsables de numerosos procesos involucrados con la regulación del ARN. Alteraciones en la dinámica de estos complejos de proteínas y ARN están asociadas con la aparición de diversas enfermedades neurodegenerativas como el ELA o FXTAS. Sin embargo, todavía se desconocen muchos aspectos relativos a su organización interna así como las contribuciones específicas del RNA en la formación y funcionamiento de estos complejos. A fin de estudiar la estructura y formación de los gránulos RNP, hemos integrado varias bases de datos de alto rendimiento de reciente aparición. Esto incluye datos sobre la composición proteica y en ARN de los RNP, sobre la interacción de proteínas y ARN extraída de experimentos de eCLIP y sobre la estructura secundaria del transcriptoma (producida mediante PARS). Todos estos datos han sido procesados para comprender las propiedades fundamentales de los ARNs que integran los gránulos, mediante el empleo de métodos computacionales como el análisis de redes o algoritmos de agrupamiento. De esta manera, hemos producido un modelo que integra varias de estas propiedades e identifica candidatos denominados ARNs de andamiaje. Definimos ARNs de andamiaje como moléculas de ARN con una alta propensión a formar gránulos y reclutar un gran número de componentes proteicos a los gránulos RNP. También hemos encontrado que las interacciones proteína-ARN conectan los principales componentes proteicos de consenso de los gránulos de estrés (un tipo específico de gránulos RNP). También hemos estudiado la contribución de las interacciones ARN-ARN y las modificaciones post-transcriptionales del RNA en la organización interna del gránulo. Hemos aplicado estos resultados para la comprensión de la fisiopatología molecular de FXTAS, empleando también algunos datos experimentales originales. En FXTAS, una mutación en el gen FMR1 produce una repetición de microsatélite en 5´ que incrementa su capacidad como ARN de andamiaje. Este mARN mutado es capaz de secuestrar algunas proteínas importantes como TRA2A (un factor de ayuste alternativo) en gránulos RNP nucleares, impidiendo su normal funcionamiento y por consiguiente produciendo algunos síntomas asociados con el progreso de la enfermedad. Una mejor comprensión de los principios que gobiernan la formación y estructura de los gránulos puede permitir desarrollar nuevas terapias (ej: aptámeros) para mitigar el desarrollo de diversas enfermedades neurodegenerativas.
Vijayakumar, Jeshlee Cyril. „Rôle du domaine de type prion de Imp dans la régulation des granules RNP neuronaux“. Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4099/document.
Der volle Inhalt der QuelleEukaryotic mRNAs are bound by RNA Binding Proteins (RBP) and packaged into diverse range of macromolecular assemblies named RNP granules. In neurons, transport RNP granules are implicated in the transport of specific mRNAs to axons or dendrites, and in their local translation in response to external cues. Although little is known about the assembly and regulation of these granules in vivo, growing evidence indicates that the presence of Prion Like domains (PLD) within RBPs favours multivalent protein–protein and protein-RNA interactions, promoting the transition of soluble complexes into RNP granules. The conserved RBP Imp is as a core component of RNP granules that are actively transported to axons upon neuronal remodelling in Drosophila. Furthermore, Imp function was shown to be required for axonal remodelling during Drosophila nervous system maturation. Analyses of the domain architecture of the Imp protein revealed that, in addition to four RNA binding domains (RBD), Imp contains a Cterminal domain showing a striking enrichment in Glutamines and Serines, which is one of the characteristics of a PLD. During my PhD, I explored the function of the PLD in the context of granule assembly and transport. In cultured cells, I observed that Imp granules assembled in the absence of the PLD, however their number and size were increased. Proteins with scrambled PLD sequence accumulated in granules of normal size and number, implying that the degree of disorder of this domain, and not its sequence, is essential for granule homeostasis. Moreover, FRAP experiments, performed on cultured cells and in vivo, revealed that Imp PLD is important to maintain the turnover of these granules. In vivo, this domain is both necessary and sufficient for efficient transport of Imp granules to axons. These defects are associated with a reduction on the number of motile granules in axons. Furthermore, mutant forms lacking the PLD do not rescue the axon remodelling defects observed upon imp loss of function. Finally, a swapping experiment in which I moved Imp PLD from the C-terminus to the N-terminus of the protein revealed that the functions of Imp PLD in granule transport and homeostasis are uncoupled, and that PLD-dependent modulation of Imp granule properties is dispensable in vivo. Together, my results show that Imp PLD of is not required for the assembly of RNP granules, but rather regulates granule number and dynamics. Furthermore, my work uncovered an unexpected in vivo function for a PLD in axonal transport and remodelling during nervous system maturation
Pushpalatha, Kavya Vinayan. „Remodelage des condensats RNP neuronaux au cours du vieillissement chez la drosophile“. Electronic Thesis or Diss., Université Côte d'Azur, 2021. http://theses.univ-cotedazur.fr/2021COAZ6007.
Der volle Inhalt der QuelleNascent mRNAs complex with RNA binding proteins (RBPs) to form highly dynamic, phase-separated organelles termed ribonucleoprotein (RNP) granules. These macromolecular assemblies can regulate gene expression by controlling the transport, decay and/or translation of associated RNA molecules. As mostly shown in vitro, RNP granule assembly and function rely on the interaction networks established by individual components and on their stoichiometry. To date, how the properties of constitutive RNP granules are regulated in different physiological context is unclear. In particular, the impact of physiological aging is unclear. My PhD project aimed at addressing this question by analyzing in vivo in long-lived neuronal cells the properties of RNP granules. To this end, I have analysed in flies of increasing age RNP granules characterized by the presence of the conserved RBP Imp/ZBP1 and DEAD-box RNA helicase Me31B/DDX6. Strikingly, a progressive increase in the condensation of Imp and Me31B into granules was observed upon aging. The large granules observed in aged flies were dynamic, contained profilin mRNA, and did not colocalize with Ubiquitin or aggregation markers, suggesting that they do not correspond to static protein aggregates. Increased condensation also associated with the loss of Me31B+ Imp- granules observed in young brains and the collapse of RNP component into a unique class of Me31B+ Imp+ granule. Furthermore, it was accompanied by a specific inhibition of the translation of granule-associated mRNAs, among which the Imp RNA target profilin. Through functional analysis, I uncovered that changes in Me31B stoichiometry trigger Me31B condensation in aged flies. While an increase in Me31B protein levels was observed upon aging, decreasing the dosage of Me31B suppressed its age-dependent condensation. As Imp condensation was only partially suppressed in this context, I performed a selective screen to identify regulators of this process. This revealed that downregulating PKA activity by different genetic means both drastically reduced Imp recruitment and prevented the age-dependent translational repression of granule-associated mRNAs. Taken together, my work thus showed for the first time in vivo that the properties of neuronal RNP granules change upon aging, a phenomenon that does not reflect general alterations in RNA homeostasis but rather specific modulation of RNP component stoichiometry and kinase activity. These results demonstrate how biological systems can modulate key parameters initially defined based on in vitro framework, and also open new perspectives in the field of age-dependent regulation of gene expression
Shah, Khyati H. „REGULATION, COMPOSITION AND FUNCTIONS OF RNP GRANULES IN QUIESCENT CELLS OF SACCHAROMYCES CEREVISIAE“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417541239.
Der volle Inhalt der QuelleFormicola, Nadia. „Remodelage des granules ARN en réponse à l’activité neuronale“. Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://theses.univ-cotedazur.fr/2019AZUR6008.
Der volle Inhalt der QuelleOne of the most fascinating – and still open – questions in neuroscience is how neuronal cells can form, store and then recall memories. Previous work has shown that Long-term memory (LTM) formation requires de novo protein synthesis, involving not only translation of newly transcribed RNAs, but also local, experience-induced translation of quiescent mRNAs carried and stored at synapses. For their transport and translational control, mRNAs are packaged with regulatory RNA binding proteins (RBPs), mainly translational repressors, into ribonucleoprotein (RNP) granules. To date, how neuronal RNP granules are remodelled in response to neuronal activity to relieve translation repression of mRNAs is unclear. Furthermore, the functional impact of such a remodelling in the establishment of long-term memories remains to be demonstrated in vivo. The objective of my PhD was to 1) investigate the in vivo mechanisms underlying activity-dependent remodelling of neuronal RNP granules; 2) test the hypothesis that RNPs could be involved in LTM-underlying mechanisms by regulating gene expression. To this end, I used as paradigm RNPs containing the conserved RBP Imp in Drosophila. First, I studied the impact of neuronal activity on Imp RNP properties by treating Drosophila brain explants with either KCl or the tyramine neuropeptide. In both cases, a disassembly of Imp RNPs was observed, characterized by a loss of both Imp and other RNP-component granular patterns, and a de-clustering of RNP-associated mRNA molecules. RNP disassembly could be reverted upon Tyramine withdrawal and was not observed in hyperpolarized neurons. Furthermore, my data suggest that RNP-disassembly is linked to increased translation of associated mRNAs, consistent with a model in which activity-induced RNP remodelling would lead to translational de-repression. Second, I investigated the mechanisms controlling RNP remodelling. A candidate regulator was CamkII, a conserved Ca2+ -activated kinase identified as a partner of Imp in an IP-Mass Spectrometry analysis. During my PhD, I could validate the Imp-CamkII interaction and showed that it is not mediated by RNA but depends on CamkII activity. Furthermore, I showed that inactivating CamkII function prevents the disassembly of Imp RNPs observed upon neuronal activation of brain explants, suggesting that CamkII may be involved in the activity-dependent remodelling of Imp RNP granules. These results are particularly interesting in the context of establishment of LTM, as CamkII has long been recognized as essential for LTM. Moreover, we recently showed in Drosophila that interfering with Imp function in a population of CNS neurons involved in learning and memory – the Mushroom Body γ neurons -, dramatically impairs LTM and that this effect relies on Imp C-terminal Prion-like domain, a domain known to be involved in RNP homeostasis. Altogether, my thesis work suggests a model where CamkII-dependent remodelling of Imp RNPs in response to neuronal activation might underlie LTM formation in vivo
Agostini, Federico 1985. „Predictions of RNA-binding ability and aggregation propensity of proteins“. Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/318159.
Der volle Inhalt der QuelleLas proteínas de unión de ARN son responsables de controlar el destino de una multitud de transcriptos codificantes y no codificantes. De hecho, la formación de complejos de ribonucleoproteínas (RNP) afina la regulación de una serie de eventos post-transcripcionales e influye en la expresión génica. Recientemente, se ha observado que las proteínas con capacidad no canónica de unión al ARN se enriquecen en las regiones estructuralmente desordenadas y de baja complejidad, que son las que participan generalmente en asociaciones funcionales y disfuncionales. Por lo tanto, es posible que interactuar con el ARN pudiera ser una manera de proteger las proteínas no estructuradas de asociaciones aberrantes o de agregación. Sin embargo, los mecanismos que impiden la agregación de proteínas y la función del ARN en tales procesos no están bien descritas. En este trabajo, se describen los me ́todos que he desarrollado para predecir la solubilidad de proteínas y para estimar la capacidad de transcriptos y proteínas de interactuar. De otra parte, voy a ilustrar sus aplicaciones y explicar como los métodos de bajo rendimiento han evolucionado a un mayor rendimiento. El objetivo final es proporcionar instrumentos a los investigadores experimentales que se pueden utilizar para facilitar la investigación de los mecanismos reguladores que controlan la homeostasis molecular.
Al-Sailawi, Majid. „Investigating RNA granules formation during caliciviruses infection“. Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/809289/.
Der volle Inhalt der QuelleOh, Seong-Wook. „Functional Analysis of RIG-I and RNP Complexes in the Antiviral Interferon System“. 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215973.
Der volle Inhalt der QuellePizzinga, Mariavittoria. „Granules of translation factor mRNAs and their potential role in the localisation of the translation machinery to regions of polarised growth“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/granules-of-translation-factor-mrnas-and-their-potential-role-in-the-localisation-of-the-translation-machinery-to-regions-of-polarised-growth(9cb42e69-3c8c-4f10-b79f-ba8261be4430).html.
Der volle Inhalt der QuelleKuznicki, Kathleen. „The function of the germline rna helicase (GLH) genes in caenorhabditis elegans“. free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9988682.
Der volle Inhalt der QuelleBuchteile zum Thema "Granules RNP"
Jønson, Lars, Finn Cilius Nielsen und Jan Christiansen. „Isolation of RNP Granules“. In RNA, 265–73. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-248-9_18.
Der volle Inhalt der QuelleMateju, Daniel, Laura Mediani, Federica F. Morelli, Simon Alberti und Serena Carra. „Molecular Chaperones Regulating the Dynamics, Composition and Functionality of RNP Granules: Implications for Age-Related Diseases“. In HSP70 in Human Diseases and Disorders, 205–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89551-2_10.
Der volle Inhalt der QuelleSidibé, Hadjara, und Christine Vande Velde. „RNA Granules and Their Role in Neurodegenerative Diseases“. In Advances in Experimental Medicine and Biology, 195–245. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31434-7_8.
Der volle Inhalt der QuelleFan, Alexander C., und Anthony K. L. Leung. „RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD“. In Advances in Experimental Medicine and Biology, 263–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29073-7_11.
Der volle Inhalt der QuelleNakamura, Hideki. „Engineering Hydrogel Production in Mammalian Cells to Synthetically Mimic RNA Granules“. In Methods in Molecular Biology, 253–76. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1441-9_15.
Der volle Inhalt der QuelleSarkar, Jaya, und Sua Myong. „Single-Molecule and Ensemble Methods to Probe Initial Stages of RNP Granule Assembly“. In Methods in Molecular Biology, 325–38. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8591-3_19.
Der volle Inhalt der QuelleXavier, Vanessa Joanne, und Jean-Claude Martinou. „Visualization of Mitochondrial RNA Granules in Cultured Cells Using 5-Bromouridine Labeling“. In Methods in Molecular Biology, 69–73. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0834-0_6.
Der volle Inhalt der QuelleNagamori, Ippei, Adam Cruickshank und Paolo Sassone-Corsi. „The Chromatoid Body: A Specialized RNA Granule of Male Germ Cells“. In Epigenetics and Human Reproduction, 311–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14773-9_14.
Der volle Inhalt der QuelleSaito, Makoto, Vytautas Iestamantavicius, Daniel Hess und Patrick Matthias. „Monitoring Acetylation of the RNA Helicase DDX3X, a Protein Critical for Formation of Stress Granules“. In Methods in Molecular Biology, 217–34. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0935-4_14.
Der volle Inhalt der QuelleBenarroch, Eduardo E. „Messenger RNA Metabolism“. In Neuroscience for Clinicians, herausgegeben von Eduardo E. Benarroch, 62–84. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0005.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Granules RNP"
Arun, Vedant, Joseph Wiley, Zia Karim und Abhijit Guha. „Abstract 4023: Novel role of neurofibromin in transport of RNA granules“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4023.
Der volle Inhalt der QuelleKolobova, Elena, M. Cecilia Larocca und James R. Goldenring. „Abstract 3560: Evaluation of RNA-stress granules formation as an indicator of response to Darinaparsin in cancer cell lines“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3560.
Der volle Inhalt der QuelleMittelbach, Livia. „Numerical simulation of rip-raps with the distinct element method“. In POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. AIP, 2013. http://dx.doi.org/10.1063/1.4812147.
Der volle Inhalt der QuelleGutierrez Klinsky, Luis Miguel, Mario Alexander Castañeda López, William Fedrigo, Thaís Radünz Kleinert, Washington Peres Núñez, Jorge Augusto Pereira Ceratti und Valeria Cristina De Faria. „Estudio de fatiga en mezclas asfálticas recicladas con cemento a través de ensayo en viga cuatro puntos“. In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.3486.
Der volle Inhalt der QuelleDuarte de Barros, Guilherme, Juliana De Oliveira, Vitor Matheus Ferraz Pereira, Wesley Da Silva Pereira und André Luiz Maciel Santana. „Análise morfológica de nanofibras Uma abordagem por visão computacional e aprendizagem de máquina“. In Computer on the Beach. São José: Universidade do Vale do Itajaí, 2021. http://dx.doi.org/10.14210/cotb.v12.p537-539.
Der volle Inhalt der QuelleBasu, Debashis, Steve Green, Kaushik Das, Ron Janetzke und John Stamatakos. „Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, Alaska“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79595.
Der volle Inhalt der QuelleWang, Heyuan, Shun Li, Tengjiao Wang und Jiayi Zheng. „Hierarchical Adaptive Temporal-Relational Modeling for Stock Trend Prediction“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/508.
Der volle Inhalt der QuelleMarquerie, G., A. Duperray, G. Uzan und R. Berthier. „BIOSYNTHETIC PATHWAYS OF THE PLATELET FIBRINOGEN RECEPTOR IN HUMAN MEGAKARYOCYTES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642954.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Granules RNP"
Thembeka Ncube, Ayanda, und Antonio Bobet. Use of Recycled Asphalt. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317316.
Der volle Inhalt der Quelle