Zeitschriftenartikel zum Thema „Granule Neuron Progenitors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Granule Neuron Progenitors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Poudel, Phanindra Prasad, Chacchu Bhattarai, Arnab Ghosh und Sneha Guruprasad Kalthur. „Expression of ATOH1 gene and activated signaling pathways for the neurogenesis of cerebellar granule cells: A review“. Neuroscience Research Notes 5, Nr. 2 (28.04.2022): 125. http://dx.doi.org/10.31117/neuroscirn.v5i2.125.
Der volle Inhalt der QuelleGao, W. Q., und M. E. Hatten. „Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum“. Development 120, Nr. 5 (01.05.1994): 1059–70. http://dx.doi.org/10.1242/dev.120.5.1059.
Der volle Inhalt der QuelleAiello, Giuseppe, und Luca Tiberi. „TMOD-05. IN VIVO REPROGRAMMING OF POSTMITOTIC NEURONS INDUCES MEDULLOBLASTOMA“. Neuro-Oncology 21, Supplement_6 (November 2019): vi263. http://dx.doi.org/10.1093/neuonc/noz175.1104.
Der volle Inhalt der QuelleMayerl, Steffen, Andrea Alcaide Martin, Reinhard Bauer, Markus Schwaninger, Heike Heuer und Charles ffrench-Constant. „Distinct Actions of the Thyroid Hormone Transporters Mct8 and Oatp1c1 in Murine Adult Hippocampal Neurogenesis“. Cells 11, Nr. 3 (02.02.2022): 524. http://dx.doi.org/10.3390/cells11030524.
Der volle Inhalt der QuelleCui, Hong, und Robert F. Bulleit. „Potassium chloride inhibits proliferation of cerebellar granule neuron progenitors“. Developmental Brain Research 106, Nr. 1-2 (März 1998): 129–35. http://dx.doi.org/10.1016/s0165-3806(97)00204-6.
Der volle Inhalt der QuelleYang, X. W., R. Zhong und N. Heintz. „Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49“. Development 122, Nr. 2 (01.02.1996): 555–66. http://dx.doi.org/10.1242/dev.122.2.555.
Der volle Inhalt der QuelleHaldipur, P., I. Sivaprakasam, V. Periasamy, S. Govindan und S. Mani. „Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum“. Biology Open 4, Nr. 7 (15.05.2015): 865–72. http://dx.doi.org/10.1242/bio.009886.
Der volle Inhalt der QuelleMani, Shyamala, Saranya Radhakrishnan, Rajit Narayanan Cheramangalam, Shalini Harkar, Samyutha Rajendran und Narendrakumar Ramanan. „Shh-Mediated Increase in β-Catenin Levels Maintains Cerebellar Granule Neuron Progenitors in Proliferation“. Cerebellum 19, Nr. 5 (03.06.2020): 645–64. http://dx.doi.org/10.1007/s12311-020-01138-2.
Der volle Inhalt der QuelleChatterjee, Anindo, Kaviya Chinnappa, Narendrakumar Ramanan und Shyamala Mani. „Centrosome Inheritance Does Not Regulate Cell Fate in Granule Neuron Progenitors of the Developing Cerebellum“. Cerebellum 17, Nr. 5 (16.04.2018): 685–91. http://dx.doi.org/10.1007/s12311-018-0935-4.
Der volle Inhalt der QuelleHa, Seungshin, Prem P. Tripathi, Ray A. Daza, Robert F. Hevner und David R. Beier. „Reelin Mediates Hippocampal Cajal-Retzius Cell Positioning and Infrapyramidal Blade Morphogenesis“. Journal of Developmental Biology 8, Nr. 3 (18.09.2020): 20. http://dx.doi.org/10.3390/jdb8030020.
Der volle Inhalt der QuelleWu, Chuanqing, Mei Yang, Juan Li, Chengbing Wang, Ting Cao, Kaixiong Tao und Baolin Wang. „Talpid3-Binding Centrosomal Protein Cep120 Is Required for Centriole Duplication and Proliferation of Cerebellar Granule Neuron Progenitors“. PLoS ONE 9, Nr. 9 (24.09.2014): e107943. http://dx.doi.org/10.1371/journal.pone.0107943.
Der volle Inhalt der QuelleYang, Haihong, Qian Zhu, Juanxian Cheng, Yan Wu, Ming Fan, Jiyan Zhang und Haitao Wu. „Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development“. Proceedings of the National Academy of Sciences 116, Nr. 10 (14.02.2019): 4661–70. http://dx.doi.org/10.1073/pnas.1813244116.
Der volle Inhalt der QuelleCleveland, Abigail, Katherine Veleta und Timothy Gershon. „PDTM-05. SONIC HEDGEHOG SIGNALING PRIMES CEREBELLAR GRANULE NEURON PROGENITORS AND MEDULLOBLASTOMA CELLS FOR APOPTOSIS BY INDUCING PRO-APOPTOTIC BIM“. Neuro-Oncology 21, Supplement_6 (November 2019): vi187—vi188. http://dx.doi.org/10.1093/neuonc/noz175.781.
Der volle Inhalt der QuelleGarcia-Lopez *, Jesus, Shiekh Tanveer Ahmad *, Yiran Li *, Brian Gudenas, Marija Kojic, Friedrik Manz, Barbara Jonchere et al. „MEDB-42. GermlineElp1 deficiency promotes genomic instability and survival of granule neuron progenitors primed for SHH medulloblastoma pathogenesis“. Neuro-Oncology 24, Supplement_1 (01.06.2022): i115. http://dx.doi.org/10.1093/neuonc/noac079.416.
Der volle Inhalt der QuelleBihannic, L., A. Forget, S. M. Cigna, C. Lefevre, M. Remke, M. Barnat, S. Dodier et al. „CS-01 * THE PHOSPHORYLATION OF ATOH1 LEADS TO ITS DEGRADATION MEDIATED BY THE E3 UBIQUITIN LIGASE HUWE1 IN GRANULE NEURON PROGENITORS“. Neuro-Oncology 16, suppl 5 (01.11.2014): v51. http://dx.doi.org/10.1093/neuonc/nou242.1.
Der volle Inhalt der QuelleGarcia-Lopez, Jesus, Shiekh Tanveer Ahmad, Yiran Li, Brian Gudenas, Marija Kojic, Friedrik Manz, Barbara Jonchere et al. „MDB-23. ELP1 GERMLINE DEFICIENCY SENSITIZES THE GRANULE NEURON LINEAGE TO SHH MEDULLOBLASTOMA AND EXPOSES NOVEL THERAPEUTIC VULNERABILITIES“. Neuro-Oncology 25, Supplement_1 (01.06.2023): i67. http://dx.doi.org/10.1093/neuonc/noad073.255.
Der volle Inhalt der QuelleForget, A., L. Bihannic, S. Cigna, C. Lefevre, M. Remke, M. Barnat, S. Dodier et al. „CS-08 * SONIC HEDGEHOG SIGNALING PROTECTS ATOH1 FROM DEGRADATION MEDIATED BY THE HECT DOMAIN E3 UBIQUITIN LIGASE HUWE1 IN CEREBELLAR GRANULE NEURON PROGENITORS“. Neuro-Oncology 16, suppl 5 (01.11.2014): v52. http://dx.doi.org/10.1093/neuonc/nou242.8.
Der volle Inhalt der QuelleCleveland, Abigail, und Timothy Gershon. „MBRS-08. SONIC HEDGEHOG SIGNALING PRIMES CEREBELLAR GRANULE NEURON PROGENITORS, THE CELL OF ORIGIN FOR MEDULLOBLASTOMA, FOR APOPTOSIS BY INDUCING PRO APOPTOTIC BIM“. Neuro-Oncology 22, Supplement_3 (01.12.2020): iii400. http://dx.doi.org/10.1093/neuonc/noaa222.527.
Der volle Inhalt der QuelleChang, Chia-Hsiang, Ting-Yu Chen, I.-Ling Lu, Rong-Bin Li, Jhih-Jie Tsai, Pin-Yeh Lin und Tang K. Tang. „CEP120-mediated KIAA0753 recruitment onto centrioles is required for timely neuronal differentiation and germinal zone exit in the developing cerebellum“. Genes & Development 35, Nr. 21-22 (28.10.2021): 1445–60. http://dx.doi.org/10.1101/gad.348636.121.
Der volle Inhalt der QuelleTikunov, Andrey, Dale Bates, Jeff Macdonald und Timothy Gershon. „TMET-01. DISRUPTION OF THE SERINE-PRODUCING PATHWAYS SLOWS PROGRESSION OF THE SONIC HEDGEHOG-DRIVEN MEDULLOBLASTOMA“. Neuro-Oncology 24, Supplement_7 (01.11.2022): vii261. http://dx.doi.org/10.1093/neuonc/noac209.1006.
Der volle Inhalt der QuelleDey, A., M. Robitaille, M. Remke, C. Maier, A. Malhotra, A. Gregorieff, J. Wrana, M. Taylor, S. Angers und A. Kenney. „MB-02 * SONIC HEDGEHOG INDUCES YB-1 IN A YAP-DEPENDENT MANNER TO REGULATE Igf2 EXPRESSION AND PROLIFERATION IN CEREBELLAR GRANULE NEURON PROGENITORS AND MEDULLOBLASTOMA CELLS“. Neuro-Oncology 17, suppl 3 (23.04.2015): iii20. http://dx.doi.org/10.1093/neuonc/nov061.78.
Der volle Inhalt der QuelleShaik, Shavali, Shinji Maegawa, Ajay Sharma, Amanda Haltom, Tara Dobson, Yanwen Yang, Keri Schadler und Vidya Gopalakrishnan. „TAMI-58. A NOVEL ROLE FOR REST IN THE CONTROL OF THE MEDULLOBLASTOMA MICROENVIRONMENT“. Neuro-Oncology 22, Supplement_2 (November 2020): ii226. http://dx.doi.org/10.1093/neuonc/noaa215.945.
Der volle Inhalt der QuelleLopez, Jesus Garcia, Lena Kutscher, Marija Kojic, Brian Gudenas, Kyle Smith, Jennifer Hadley, Amar Gajjar et al. „MBRS-24. FUNCTIONAL CHARACTERIZATION OF IKBKAP/ELP1 AS A NOVEL SHH MEDULLOBLASTOMA PREDISPOSITION GENE“. Neuro-Oncology 22, Supplement_3 (01.12.2020): iii402—iii403. http://dx.doi.org/10.1093/neuonc/noaa222.540.
Der volle Inhalt der QuelleVouri, Mikaela, Audrey Mercier, Patricia Benites Goncalves da Silva, Konstantin Okonechnikov, Antoine Forget, Hua Yu, Anais Chivet et al. „MBRS-51. MUTATIONS IN BRPF1 FOUND IN SHH MEDULLOBLASTOMA PREVENT INTERACTION WITH TP53 AND LEADS TO RADIORESISTANCE IN VITRO“. Neuro-Oncology 22, Supplement_3 (01.12.2020): iii406—iii407. http://dx.doi.org/10.1093/neuonc/noaa222.558.
Der volle Inhalt der QuelleDobson, Tara H. W., Rong-Hua Tao, Jyothishmathi Swaminathan, Shinji Maegawa, Shavali Shaik, Javiera Bravo-Alegria, Ajay Sharma et al. „Transcriptional repressor REST drives lineage stage–specific chromatin compaction atPtch1and increases AKT activation in a mouse model of medulloblastoma“. Science Signaling 12, Nr. 565 (22.01.2019): eaan8680. http://dx.doi.org/10.1126/scisignal.aan8680.
Der volle Inhalt der QuelleCleveland, Abigail, Katherine Veleta und Timothy Gershon. „CBIO-23. ANTIAPOPTOTIC Bcl-xL RESTRICTS APOPTOSIS IN SHH MEDULLOBLASTOMA AND PROMOTES PROGRESSION“. Neuro-Oncology 23, Supplement_6 (02.11.2021): vi31—vi32. http://dx.doi.org/10.1093/neuonc/noab196.122.
Der volle Inhalt der QuelleCleveland, Abigail, Daniel Malawsky, Mehal Churiwal und Timothy Gershon. „EMBR-15. PRC2 COMPLEX ENFORCES NEURONAL LINEAGE AND SUPPRESSES TUMOR GROWTH IN SHH MEDULLOBLASTOMA“. Neuro-Oncology 23, Supplement_1 (01.06.2021): i8—i9. http://dx.doi.org/10.1093/neuonc/noab090.033.
Der volle Inhalt der QuelleRosario, C. M., B. D. Yandava, B. Kosaras, D. Zurakowski, R. L. Sidman und E. Y. Snyder. „Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action“. Development 124, Nr. 21 (01.11.1997): 4213–24. http://dx.doi.org/10.1242/dev.124.21.4213.
Der volle Inhalt der QuelleTsea, Ioanna, Yana Ruchiy, Manouk Verhoeven, Indranil Sinha, Klas Blomgren, Lena Maria Carlson, John Inge Johnsen, Cecilia Dyberg und Ninib Baryawno. „Abstract 1677: Transcriptomic landscape of medulloblastoma reveals pathways of tumor-stroma remodelling“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 1677. http://dx.doi.org/10.1158/1538-7445.am2022-1677.
Der volle Inhalt der QuelleZhang, Di, Xuezhen Wang und Xin-Yun Lu. „Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice“. Endocrinology 157, Nr. 7 (17.05.2016): 2853–69. http://dx.doi.org/10.1210/en.2015-2078.
Der volle Inhalt der QuelleJiang, Yifei, Dongyi Tong, Rylon D. Hofacer, Andreas W. Loepke, Qingquan Lian und Steve C. Danzer. „Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity“. Anesthesiology 125, Nr. 6 (01.12.2016): 1159–70. http://dx.doi.org/10.1097/aln.0000000000001358.
Der volle Inhalt der QuelleLattanzi, Davide, David Savelli, Marica Pagliarini, Riccardo Cuppini und Patrizia Ambrogini. „Short-Term, Voluntary Exercise Affects Morpho-Functional Maturation of Adult-Generated Neurons in Rat Hippocampus“. International Journal of Molecular Sciences 23, Nr. 12 (20.06.2022): 6866. http://dx.doi.org/10.3390/ijms23126866.
Der volle Inhalt der QuelleAlcantara, S., M. Ruiz, F. De Castro, E. Soriano und C. Sotelo. „Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system“. Development 127, Nr. 7 (01.04.2000): 1359–72. http://dx.doi.org/10.1242/dev.127.7.1359.
Der volle Inhalt der QuelleAyad, Nagi. „GENE-44. BRD4 DELETION LEADS TO CEREBELLAR DEFICITS AND ATAXIA“. Neuro-Oncology 21, Supplement_6 (November 2019): vi107. http://dx.doi.org/10.1093/neuonc/noz175.446.
Der volle Inhalt der QuelleLee, H. Y., J. M. Angelastro, A. M. Kenney, C. Mason und L. Greene. „[P1.16]: Regulation of ATF5 during cerebellar granule neuron progenitor proliferation and differentiation“. International Journal of Developmental Neuroscience 26, Nr. 8 (25.11.2008): 847. http://dx.doi.org/10.1016/j.ijdevneu.2008.09.066.
Der volle Inhalt der QuelleTiberi, Luca. „PDTM-35. MODELLING MEDULLOBLASTOMA WITH MOUSE MODELS AND HUMAN CEREBELLAR ORGANOIDS“. Neuro-Oncology 21, Supplement_6 (November 2019): vi195. http://dx.doi.org/10.1093/neuonc/noz175.811.
Der volle Inhalt der QuelleAnne, Sandrine L., Eve-Ellen Govek, Olivier Ayrault, Jee Hae Kim, Xiaodong Zhu, David A. Murphy, Linda Van Aelst, Martine F. Roussel und Mary E. Hatten. „WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation“. PLoS ONE 8, Nr. 11 (26.11.2013): e81769. http://dx.doi.org/10.1371/journal.pone.0081769.
Der volle Inhalt der QuelleStoyanova, Irina, Andrii Klymenko, Jeannette Willms, Thorsten Doeppner, Anton Tonchev und David Lutz. „Ghrelin Regulates Expression of the Transcription Factor Pax6 in Hypoxic Brain Progenitor Cells and Neurons“. Cells 11, Nr. 5 (23.02.2022): 782. http://dx.doi.org/10.3390/cells11050782.
Der volle Inhalt der QuelleChang, Chia-Hsiang, Marco Zanini, Hamasseh Shirvani, Jia-Shing Cheng, Hua Yu, Chih-Hsin Feng, Audrey L. Mercier et al. „Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation“. Developmental Cell 48, Nr. 2 (Januar 2019): 184–99. http://dx.doi.org/10.1016/j.devcel.2018.12.017.
Der volle Inhalt der QuelleLee, Hae Young, James M. Angelastro, Anna Marie Kenney, Carol A. Mason und Lloyd A. Greene. „Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells“. Developmental Neurobiology 72, Nr. 6 (14.05.2012): 789–804. http://dx.doi.org/10.1002/dneu.20979.
Der volle Inhalt der QuelleSharma, Geeta. „The dominant functional nicotinic receptor in progenitor cells in the rostral migratory stream is the α3β4 subtype“. Journal of Neurophysiology 109, Nr. 3 (01.02.2013): 867–72. http://dx.doi.org/10.1152/jn.00886.2012.
Der volle Inhalt der QuelleWang, Wei, Qiang Qu, Frances I. Smith und Daniel L. Kilpatrick. „Self-inactivating lentiviruses: Versatile vectors for quantitative transduction of cerebellar granule neurons and their progenitors“. Journal of Neuroscience Methods 149, Nr. 2 (Dezember 2005): 144–53. http://dx.doi.org/10.1016/j.jneumeth.2005.05.019.
Der volle Inhalt der QuellePrzyborski, S. A., B. B. Knowles und S. L. Ackerman. „Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary“. Development 125, Nr. 1 (01.01.1998): 41–50. http://dx.doi.org/10.1242/dev.125.1.41.
Der volle Inhalt der QuelleZigova, Tanja, Viorica Pencea, Ranjita Betarbet, Stanley J. Wiegand, Charlie Alexander, Roy A. E. Bakay und Marla B. Luskin. „Neuronal Progenitor Cells of the Neonatal Subventricular Zone Differentiate and Disperse following Transplantation into the Adult Rat Striatum“. Cell Transplantation 7, Nr. 2 (März 1998): 137–56. http://dx.doi.org/10.1177/096368979800700209.
Der volle Inhalt der QuelleAlder, Janet, Kevin J. Lee, Thomas M. Jessell und Mary E. Hatten. „Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells“. Nature Neuroscience 2, Nr. 6 (Juni 1999): 535–40. http://dx.doi.org/10.1038/9189.
Der volle Inhalt der QuelleSun, Gerald J., Yi Zhou, Ryan P. Stadel, Jonathan Moss, Jing Hui A. Yong, Shiori Ito, Nicholas K. Kawasaki et al. „Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain“. Proceedings of the National Academy of Sciences 112, Nr. 30 (13.07.2015): 9484–89. http://dx.doi.org/10.1073/pnas.1508545112.
Der volle Inhalt der QuelleWang, Lin, Jangham Jung, Husam Babikir, Karin Shamardani, Noriyuki Kasahara, Sabine Müller und Aaron Diaz. „MEDB-59. A draft atlas of medulloblastoma cellular evolution under therapy“. Neuro-Oncology 24, Supplement_1 (01.06.2022): i120. http://dx.doi.org/10.1093/neuonc/noac079.433.
Der volle Inhalt der QuelleHattori, Noriko, Shozo Ohta, Takashi Sakamoto, Satoshi Mishima und Shoei Furukawa. „Royal Jelly Facilitates Restoration of the Cognitive Ability in Trimethyltin-Intoxicated Mice“. Evidence-Based Complementary and Alternative Medicine 2011 (2011): 1–6. http://dx.doi.org/10.1093/ecam/nep029.
Der volle Inhalt der QuelleSarnat, Harvey B. „8. Maturation of the Fetal Olfactory Bulb“. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 42, S2 (August 2015): S4. http://dx.doi.org/10.1017/cjn.2015.256.
Der volle Inhalt der QuelleKamiya, Shiori, Tetsuya Kobayashi und Kazuhiko Sawada. „Tracking of Internal Granular Progenitors Responding to Valproic Acid in the Cerebellar Cortex of Infant Ferrets“. Cells 13, Nr. 4 (07.02.2024): 308. http://dx.doi.org/10.3390/cells13040308.
Der volle Inhalt der Quelle