Auswahl der wissenschaftlichen Literatur zum Thema „Graft copolymers“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Graft copolymers" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Graft copolymers"

1

Roggi, Andrea, Elisa Guazzelli, Claudio Resta, Gabriele Agonigi, Antonio Filpi und Elisa Martinelli. „Vinylbenzyl Chloride/Styrene-Grafted SBS Copolymers via TEMPO-Mediated Polymerization for the Fabrication of Anion Exchange Membranes for Water Electrolysis“. Polymers 15, Nr. 8 (08.04.2023): 1826. http://dx.doi.org/10.3390/polym15081826.

Der volle Inhalt der Quelle
Annotation:
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer’s purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The –CH2Cl functional groups of the VBC grafts were then quantitatively converted to –CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tse, Mun F., A. J. Dias und H.-C. Wang. „Characterization and Physical Properties of New Isobutylene-Based Graft Copolymers“. Rubber Chemistry and Technology 71, Nr. 4 (01.09.1998): 803–19. http://dx.doi.org/10.5254/1.3538506.

Der volle Inhalt der Quelle
Annotation:
Abstract A number of isobutylene-based graft copolymers with different compositions are compared to several commercial thermoplastic block copolymers, such as SIS, SBS and SEBS, in terms of morphology and viscoelasticity. The backbone of these graft copolymers is a terpolymer (BIMS) of isobutylene, p-methylstyrene and p-bromomethylstyrene, and the side chains are either polystyrene or poly(2,6-dimethyl-1,4-phenylene ether). Graft copolymer synthesis, statistics of graft formation, and stress-strain properties are described. Overall, these graft copolymers exhibit unique shear dependent viscosity effects, such as rapid thickening (quick setting) at low shear and lower viscosity (better processability) at high shear, compared to linear triblock copolymers. The rheological behavior of these graft copolymers could be a key advantage for high-shear calendering, extrusion, hot-melt spraying, and injection molding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nguyen, Sophie. „Graft copolymers containing poly(3-hydroxyalkanoates) — A review on their synthesis, properties, and applications“. Canadian Journal of Chemistry 86, Nr. 6 (01.06.2008): 570–78. http://dx.doi.org/10.1139/v08-044.

Der volle Inhalt der Quelle
Annotation:
The use of the poly(3-hydroxyalkanoates) in copolymer synthesis has received much interest, as the microbial polyester segments can bring interesting properties, such as biodegradability and biocompatibility. The synthesis, properties, and applications of graft copolymers containing poly(3-hydroxyalkanoates) as main chain or branches are reviewed here, with emphasis on the different preparation methods, which fit into the three main synthesis strategies of graft copolymers: “grafting onto”, “grafting from”, and “grafting through” or macromonomer methods.Key words: poly(3-hydroxyalkanoates), graft copolymer, synthesis, properties, applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pavlopoulou, Eleni, Kiriaki Chrissopoulou, Stergios Pispas, Nikos Hadjichristidis und Spiros H. Anastasiadis. „The Micellization of Well-Defined Single Graft Copolymers in Block Copolymer/Homopolymer Blends“. Polymers 13, Nr. 5 (09.03.2021): 833. http://dx.doi.org/10.3390/polym13050833.

Der volle Inhalt der Quelle
Annotation:
A series of well-defined (polyisoprene)2(polystyrene), I2S, single graft copolymers with similar total molecular weights but different compositions, fPS, were blended with a low molecular weight polyisoprene homopolymer matrix at a constant concentration 2 wt%, and the micellar characteristics were studied by small-angle x-ray scattering. To investigate the effect of macromolecular architecture on the formation and characteristics of micelles, the results on the single graft copolymers were compared with those of the corresponding linear polystyrene-b-polyisoprene diblock copolymers, SI. The comparison reveals that the polystyrene core chains are more stretched in the case of graft copolymer micelles. Stretching turned out to be purely a result of the architecture due to the second polyisoprene block in the corona. The micellization of a (polystyrene)2(polyisoprene), S2I, graft copolymer was also studied, and the comparison with the results of the corresponding I2S and SI copolymers emphasizes the need for a critical core volume rather than a critical length of the core-forming block, in order to have stable micelles. Finally, the absence of micellization in the case of the I2S copolymer with the highest polystyrene volume fraction is discussed. For this sample, macrophase separation occurs, with polyisoprene cylinders formed in the copolymer-rich domains of the phase-separated blends.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nguyen, Thi Nhan, Hieu Nguyen Duy, Dung Tran Anh, Thuong Nghiem Thi, Thu Ha Nguyen, Nam Nguyen Van, Tung Tran Quang, Tung Nguyen Huy und Thuy Tran Thi. „Improvement of Thermal and Mechanical Properties of Vietnam Deproteinized Natural Rubber via Graft Copolymerization with Methyl Methacrylate“. International Journal of Polymer Science 2020 (14.07.2020): 1–11. http://dx.doi.org/10.1155/2020/9037827.

Der volle Inhalt der Quelle
Annotation:
In this study, we investigated the improvement of the thermal and mechanical properties of Vietnam deproteinized natural rubber (DPNR) via graft copolymerization of methyl methacrylate (MMA). The graft copolymerization was achieved successfully in latex stage using tert-butyl hydroperoxide (TBHPO) and tetra-ethylenepentamine (TEPA) as radical initiators at 30°C. By grafting with various MMA feeds and initiator concentration of 6.6×10−5 mol/g-rubber, the highest grafting efficiency and conversion were achieved at MMA of 15 wt.% per kg of rubber, 68% and 90%, respectively. The structure of grafted copolymers was characterized by 1H NMR, FTIR-ATR, and GPC, and thermal properties were investigated through DSC and TGA measurements. These showed that graft copolymers were more stable and rigid than DPNR. Storage modulus (G′) of graft copolymer was found to double that of DPNR, which contributed to the formation of graft copolymer. After sulfur vulcanization, the mechanical properties of DPNR-graft-PMMA, such as tensile strength, tear strength, and hardness, were improved significantly. Curing behaviors of the graft copolymers were found to be remarkably better than virgin DPNR.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Demina, Tatiana S., Maria G. Drozdova, Chantal Sevrin, Philippe Compère, Tatiana A. Akopova, Elena Markvicheva und Christian Grandfils. „Biodegradable Cell Microcarriers Based on Chitosan/Polyester Graft-Copolymers“. Molecules 25, Nr. 8 (22.04.2020): 1949. http://dx.doi.org/10.3390/molecules25081949.

Der volle Inhalt der Quelle
Annotation:
Self-stabilizing biodegradable microcarriers were produced via an oil/water solvent evaporation technique using amphiphilic chitosan-g-polyester copolymers as a core material in oil phase without the addition of any emulsifier in aqueous phase. The total yield of the copolymer-based microparticles reached up to 79 wt. %, which is comparable to a yield achievable using traditional emulsifiers. The kinetics of microparticle self-stabilization, monitored during their process, were correlated to the migration of hydrophilic copolymer’s moieties to the oil/water interface. With a favorable surface/volume ratio and the presence of bioadhesive natural fragments anchored to their surface, the performance of these novel microcarriers has been highlighted by evaluating cell morphology and proliferation within a week of cell cultivation in vitro.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nikolic, Vladimir, Sava Velickovic, Dusan Antonovic und Aleksandar Popovic. „Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid) copolymers in model river water“. Journal of the Serbian Chemical Society 78, Nr. 9 (2013): 1425–41. http://dx.doi.org/10.2298/jsc121216051n.

Der volle Inhalt der Quelle
Annotation:
In this paper the biodegradation study of grafted copolymers of polystyrene (PS) and corn starch and poly(methacrylic acid) and corn starch in model river water is described. These copolymers were obtained in the presence of different amine activators. The synthesized copolymers and products of degradation were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Biodegradation was monitored by mass decrease and number of microorganisms by Koch?s method. Biodegradation of both copolymers advanced with time, poly(methacrylic acid)-graft-starch copolymers completely degraded after 21 day, and polystyrene-graft-starch partially degraded (45.78-93.09 % of total mass) after 27 days. Differences in the degree of biodegradation are consequences of different structure of the samples, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. The grafting degree of PS necessary to prevent biodegradation was 54 %. Based on experimental evidence, mechanisms of both biodegradation processes are proposed, and influence of degree of starch and synthetic component of copolymers on degradation were established.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Song, Lixin, Qian Zhang, Yongsheng Hao, Yongchao Li, Weihan Chi, Fei Cong, Ying Shi und Li-Zhi Liu. „Effect of Different Comonomers Added to Graft Copolymers on the Properties of PLA/PPC/PLA-g-GMA Blends“. Polymers 14, Nr. 19 (29.09.2022): 4088. http://dx.doi.org/10.3390/polym14194088.

Der volle Inhalt der Quelle
Annotation:
The melt-free radical grafting of glycidyl methacrylate (GMA) onto poly (lactic acid) (PLA) with styrene (St), α-methylstyrene (AMS), and epoxy resin (EP) as comonomers in a twin-screw extruder was used to prepare PLA-g-GMA graft copolymers. The prepared graft copolymers were then used as compatibilizers to prepare PLA/PPC/PLA-g-GMA blends by melt blending with PLA and polypropylene carbonate (PPC), respectively. The effects of different comonomers in the PLA-g-GMA graft copolymers on the thermal, rheological, optical, and mechanical properties and microstructure of the blends were studied. It was found that the grafting degree of PLA-g-GMA graft copolymers was increased to varying degrees after the introduction of comonomers in the PLA-g-GMA grafting reaction system. When St was used as the comonomer, the grafting degree of the PLA-g-GMA graft copolymer increased most significantly, from 0.8 to 1.6 phr. St as a comonomer also most improved the compatibility between PLA and PPC, and the haze of the blends was reduced while maintaining high transmittance. In addition, the PLA-g-GMA graft copolymer with the introduction of St as a comonomer significantly improved the impact toughness of the blends, while the thermal stability and tensile strength of the blends remained largely unchanged.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ashish Chauhan und Balbir Kaith. „Exploring the Diversification in Grafted Copolymer“. International Journal of Fundamental and Applied Sciences (IJFAS) 1, Nr. 2 (30.06.2012): 14–19. http://dx.doi.org/10.59415/ijfas.v1i2.24.

Der volle Inhalt der Quelle
Annotation:
The paper deals with optimization of the reaction parameters, graft copolymerization, characterizationand evaluation of the transformations in Roselle stem fiber on graft copolymerization with vinyl monomer, using cericammonium nitrate nitric acid initiator system. Methods: Different reaction parameters such as temperature, time, initiatorconcentration, monomer concentration and pH were optimized to get the maximum graft yield. The graft copolymer thusformed were characterized by advanced techniques. Results: The physico-chemico-thermal resistance, moisture absorbance,swelling behavior of graft copolymers and the dye uptake behavior were studied and found to have improved. Conclusion:Hence, this first report of novel graft copolymers is to help towards various applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Yun-Hai, Xiao-Hong Cao, Dao-Feng Peng und Wen-Yuan Xu. „Polycationic graft copolymers of poly(N-vinylpyrrolidone) as non-viral vectors for gene transfection“. Open Chemistry 7, Nr. 3 (01.09.2009): 532–41. http://dx.doi.org/10.2478/s11532-009-0045-8.

Der volle Inhalt der Quelle
Annotation:
AbstractNovel graft copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) with N-vinylpyrrolidone (NVP) were designed and synthesized by the free radical copolymerization of DMAEMA with precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP). The ability of the PVP- grafted copolymers to bind and condense DNA was confirmed by ethidium bromide displacement assay, agarose gel electrophoresis and transmission electron microscopy. The presence of PVP in the copolymers had a favorable effect on the biophysical properties of polymer/DNA complexes. Colloidal stable complexes obtained from the copolymer systems, were shown to be separate, uniformly spherical nanoparticles by transmission electron microscopy. The approximate diameter of the complexes was 150–200 nm, as determined by dynamic light scattering studies. These results confirm an important role played by the PVP grafts in producing compact stable DNA complexes. The ζ-potential measurements revealed that the incorporation of the PVP grafts reduced the positive surface charge of polymer/DNA complexes. The cytotoxicity of the copolymers decreased with an increasing fraction of PVP. Furthermore, in vitro transfection experiments with these copolymers showed improved ability of transfection in cell culture, demonstrating an important role for PVP grafts in enhancement of the transfection efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Graft copolymers"

1

Tsartolia, E. „Graft copolymers“. Thesis, University of Sussex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Holohan, Aidan. „Polyhydroxyether-polydimethylsiloxane graft copolymers“. Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46823.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Parker, James. „Graft copolymers of poly(methylphenylsilane)“. Thesis, University of Kent, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chisholm, M. S. „Copolymers containing polydimethylsiloxane graft chains“. Thesis, University of Aberdeen, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wilson, D. „Polyurethane-polymethyl methacrylate graft copolymers“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ding, Wen. „Graft copolymerization of chitosan“. Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/8510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Azam, Mohammad. „Synthesis and characterisation of polyethylene graft copolymers“. Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/27052.

Der volle Inhalt der Quelle
Annotation:
Graft copolymers based on a non-polar polyethylene backbone and polar poly(methyl methacrylate) (PMMA), poly(phenyl ethyl methacrylate) (PPHETMA) and poly(butyl acrylate) (PBA) side chains were synthesised by non-ionic grafting onto method. Carboxyl terminated prepolymers and hydroxyl group containing backbones were synthesised and characterised separately and then condensed in a common solvent to form a graft copolymer. Carboxyl terminated prepolymers PMMA, PPHETMA and PBA of molar masses in the range of 1400 to 4400 g mol-1 were prepared by free-radical polymerisation using 4, 4-azobis (4-cyanovaleric acid) (ACVA) as initiator and thioglycollic acid (TGA) as chain transfer agent. Backbones containing hydroxyl groups were synthesised by hydrolysing ethylene-vinyl acetate (EVA) copolymers to ethylene-vinyl alcohol (EVOH) copolymer with a VOH content of 9.8 mole %, with a VOH content of 21 mole % and a partially hydrolysed terpolymer ethylene-vinyl alcohol-vinyl acetate with a VOH content of 8.0 mole %.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kee, R. Andrew. „Synthesis and characterization of arborescent graft copolymers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60542.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

McCarthy, Christopher J. „Synthetic routes towards spin probe-grafted copolymers /“. Online version of thesis, 1993. http://hdl.handle.net/1850/11890.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

York, Gregory A. „Structure-property relationships of multiphase copolymers“. Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07102007-142517/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Graft copolymers"

1

Kalia, Susheel, und M. W. Sabaa, Hrsg. Polysaccharide Based Graft Copolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kalia, Susheel. Polysaccharide Based Graft Copolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Meeting, Polymer Networks Group. Biological and synthetic polymer networks. London: Elsevier Applied Science, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nishio, Yoshiyuki, Yoshikuni Teramoto, Ryosuke Kusumi, Kazuki Sugimura und Yoshitaka Aranishi. Blends and Graft Copolymers of Cellulosics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55321-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

1926-, Yamashita Yūya, Hrsg. Chemistry and industry of macromonomers. Basel: Hüthig & Wepf Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wan Aizan Wan Abdul Rahman. Graft copolymers of cis-polyisoprene and methyl methacrylate. Birmingham: University of Birmingham, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Saitō, Kyōichi. Gurafuto jūgō ni yoru kōbunshi kyūchakuzai kakumei. Tōkyō-to Chiyoda-ku: Maruzen Shuppan, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Matyjaszewski, Krzysztof, und Kelly A. Davis. Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45806-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Treacher, Kevin. Synthesis of block and graft copolymers of Poly(2-hydroxyethyl methacrylate) and polydimethylsiloxane. Manchester: University of Manchester, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Thakur, Vijay Kumar, Hrsg. Cellulose-Based Graft Copolymers. CRC Press, 2015. http://dx.doi.org/10.1201/b18390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Graft copolymers"

1

Teramoto, Yoshikuni, und Ryosuke Kusumi. „Cellulosic Graft Copolymers“. In SpringerBriefs in Molecular Science, 75–108. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55321-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kalia, Susheel, Magdy W. Sabaa und Sarita Kango. „Polymer Grafting: A Versatile Means to Modify the Polysaccharides“. In Polysaccharide Based Graft Copolymers, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gürdağ, Gülten, und Shokat Sarmad. „Cellulose Graft Copolymers: Synthesis, Properties, and Applications“. In Polysaccharide Based Graft Copolymers, 15–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jyothi, A. N., und Antonio J. F. Carvalho. „Starch-g-Copolymers: Synthesis, Properties and Applications“. In Polysaccharide Based Graft Copolymers, 59–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sabaa, Magdy W. „Chitosan-g-Copolymers: Synthesis, Properties, and Applications“. In Polysaccharide Based Graft Copolymers, 111–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Aiqin, und Wenbo Wang. „Gum-g-Copolymers: Synthesis, Properties, and Applications“. In Polysaccharide Based Graft Copolymers, 149–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Onishi, Yasuhiko, Yuki Eshita und Masaaki Mizuno. „Dextran Graft Copolymers: Synthesis, Properties and Applications“. In Polysaccharide Based Graft Copolymers, 205–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bhatia, Jaspreet Kaur, Balbir Singh Kaith und Susheel Kalia. „Polysaccharide Hydrogels: Synthesis, Characterization, and Applications“. In Polysaccharide Based Graft Copolymers, 271–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Palumbo, Fabio Salvatore, Giovanna Pitarresi, Calogero Fiorica und Gaetano Giammona. „Hyaluronic Acid-g-Copolymers: Synthesis, Properties, and Applications“. In Polysaccharide Based Graft Copolymers, 291–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pal, Sagar, und Raghunath Das. „Polysaccharide-Based Graft Copolymers for Biomedical Applications“. In Polysaccharide Based Graft Copolymers, 325–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36566-9_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Graft copolymers"

1

Lai, Wing-Fu, und Marie C. M. Lin. „Chitosan-PEI graft copolymers for pDNA delivery: fabrication and in vitro properties“. In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Meister, J. J., D. R. Patil und H. Channell. „Synthesis, Characterization, and Testing of Lignin Graft Copolymers for Use in Drilling Mud Applications“. In SPE Oilfield and Geothermal Chemistry Symposium. Society of Petroleum Engineers, 1985. http://dx.doi.org/10.2118/13559-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hasegawa, H., Abarrul Ikram, Agus Purwanto, Sutiarso, Anne Zulfia, Sunit Hendrana und Zeily Nurachman. „SANS and SAXS Study of Block and Graft Copolymers Containing Natural and Synthetic Rubbers“. In NEUTRON AND X-RAY SCATTERING 2007: The International Conference. AIP, 2008. http://dx.doi.org/10.1063/1.2906096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bendaikha, H., G. Clisson, A. Khoukh, J. François, S. Ould Kada, A. Krallafa, Alberto D’Amore, Domenico Acierno und Luigi Grassia. „Synthesis and Characterization of Amphiphilic Graft Copolymers of Poly (1,3dioxolane) Macromonomers with Styrene and Methyl Methacrylate“. In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zaccaria, Cristiana L., Valeria Cedrati, Aurora Pacini, Andrea Nitti und Dario Pasini. „Graft copolymers from poly(γ-glutamic acid): Innovative macromolcular scaffolds for additive manufacturing from renewable natural resources“. In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2017. http://dx.doi.org/10.1109/imws-amp.2017.8247415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dilmukhambetov, Yessen. „THE EFFECT OF GRAFT COPOLYMERS BASED ON POLYETHYLENE GLYCOL AND N-VINYLCAPROLACTAM ON PHYSICOCHEMICAL PROPERTIES OF CEMENT PASTES“. In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2015. http://dx.doi.org/10.5593/sgem2015/b62/s26.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stolarczyk, Agnieszka, Erwin Maciak und Marcin Procek. „Study of the impact of UV radiation on NO2 sensing properties of graft comb copolymers of poly(3-hexylthiophene) at room temperature“. In Twelfth Integrated Optics – Sensors, Sensing Structures and Methods Conference, herausgegeben von Tadeusz Pustelny und Przemyslaw Struk. SPIE, 2017. http://dx.doi.org/10.1117/12.2282777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

PATIL, V. V., M. W. MESHRAM, B. N. THORAT und S. T. MHASKE. „STARCH GRAFT COPOLYMER: GRANULATION AND DRYING“. In The Proceedings of the 5th Asia-Pacific Drying Conference. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812771957_0085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

An, Changwei, Jun Zhang und Xianqi Guan. „Preparation of Chitosan Acrylamide Graft Copolymer“. In 10th Academic Conference of Geology Resource Management and Sustainable Development 2022. Riverwood, NSW Australia: Aussino Academic Publishing House, 2022. http://dx.doi.org/10.52202/067798-0100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xian, He Xiao, Liu Miao Miao, Sun Fu Lin und Zhao Hui Fang. „Preparation and application researches of starch graft copolymer“. In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5768406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Graft copolymers"

1

Wagener, K. B., und S. K. Cummings. Carbosilane and Carbosiloxane Based Graft Copolymers as Recyclable Multiphase Thermoplastic Materials. Fort Belvoir, VA: Defense Technical Information Center, Juli 1997. http://dx.doi.org/10.21236/ada328512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rabeony, M., D. G. Peiffer, S. K. Behal, M. Disko, W. D. Dozier, P. Thiyagarajan und M. Y. Lin. Self-organization of graft copolymers at surfaces, interfaces and in bulk. Office of Scientific and Technical Information (OSTI), Juli 1994. http://dx.doi.org/10.2172/10174862.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mays, Jimmy W. Synthesis and Properties of Model Graft and Flexible/Semi-Rigid Block Copolymers. Fort Belvoir, VA: Defense Technical Information Center, Mai 1998. http://dx.doi.org/10.21236/ada358036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fernando A. Escobedo. Final Report: Grant DE-FG02-05ER15682. Simulation of Complex Microphase Formation in Pure and Nanoparticle-filled Diblock Copolymers. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/967391.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie