Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Goal Abstraction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Goal Abstraction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Goal Abstraction"
Lee, David S., und Oscar Ybarra. „Cultivating Effective Social Support Through Abstraction“. Personality and Social Psychology Bulletin 43, Nr. 4 (31.01.2017): 453–64. http://dx.doi.org/10.1177/0146167216688205.
Der volle Inhalt der QuelleMatook, Sabine, und Hans van der Heijden. „Goal Abstraction, Goal Linkage Dependency, and Perceived Utilitarian Value of Information Systems“. Journal of Organizational and End User Computing 25, Nr. 2 (April 2013): 41–58. http://dx.doi.org/10.4018/joeuc.2013040103.
Der volle Inhalt der QuelleAbel, David. „A Theory of State Abstraction for Reinforcement Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9876–77. http://dx.doi.org/10.1609/aaai.v33i01.33019876.
Der volle Inhalt der QuelleSeipp, Jendrik, und Malte Helmert. „Counterexample-Guided Cartesian Abstraction Refinement for Classical Planning“. Journal of Artificial Intelligence Research 62 (25.07.2018): 535–77. http://dx.doi.org/10.1613/jair.1.11217.
Der volle Inhalt der QuelleSurynek, Pavel. „Non-Refined Abstractions in Counterexample Guided Abstraction Refinement for Multi-Agent Path Finding (Extended Abstract)“. Proceedings of the International Symposium on Combinatorial Search 17 (01.06.2024): 287–88. http://dx.doi.org/10.1609/socs.v17i1.31584.
Der volle Inhalt der QuelleSriraman, Bharath. „Discovering Steiner Triple Systems through Problem Solving“. Mathematics Teacher 97, Nr. 5 (Mai 2004): 320–26. http://dx.doi.org/10.5951/mt.97.5.0320.
Der volle Inhalt der QuelleSriraman, Bharath. „Discovering Steiner Triple Systems through Problem Solving“. Mathematics Teacher 97, Nr. 5 (Mai 2004): 320–26. http://dx.doi.org/10.5951/mt.97.5.0320.
Der volle Inhalt der QuelleWientjes, Sven, und Clay B. Holroyd. „The successor representation subserves hierarchical abstraction for goal-directed behavior“. PLOS Computational Biology 20, Nr. 2 (20.02.2024): e1011312. http://dx.doi.org/10.1371/journal.pcbi.1011312.
Der volle Inhalt der QuelleCalmet, Jacques, und Marvin Oliver Schneider. „Decision Making Modeled as a Theorem Proving Process“. International Journal of Decision Support System Technology 4, Nr. 3 (Juli 2012): 1–11. http://dx.doi.org/10.4018/jdsst.2012070101.
Der volle Inhalt der QuelleSeipp, Jendrik, und Malte Helmert. „Diverse and Additive Cartesian Abstraction Heuristics“. Proceedings of the International Conference on Automated Planning and Scheduling 24 (11.05.2014): 289–97. http://dx.doi.org/10.1609/icaps.v24i1.13639.
Der volle Inhalt der QuelleDissertationen zum Thema "Goal Abstraction"
Zadem, Mehdi. „Automatic Symbolic Goal Abstraction via Reachability Analysis in Hierarchical Reinforcement Learning“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX141.
Der volle Inhalt der QuelleHierarchical Reinforcement Learning (HRL) is a paradigm that can be leveraged to automatically learn strategies for long-horizon tasks, which typically involve multiple milestones that must be achieved before the problem is solved. The main idea behind Hierarchical Reinforcement Learning is to break up the difficult task into smaller sub-tasks, that can be more easily approached under in a more constrained aspect.A core challenge in HRL is to identify an ideal decomposition of the long-horizon task in the form of goals that a learning agent will try to achieve. High-dimensional environments and complex dynamics make it particularly difficult for the agent to understand which goals are critical for the task.This thesis explores the concept of learning symbolic goal representations within HRL, inspired from abstractions studied in the field of Formal Methods. We develop a spatial abstraction method that captures reachability relations in the environment's observable space, and provide guarantees on the suboptimality of the agent's learned policy. We also prove that the goal abstraction can be computed through a process of refinement. Furthermore, we implement the reachability-aware goal abstraction with a Hierarchical Reinforcement Learning framework called GARA, creating an agent that can concurrently learn the goal abstraction and policy. We showcase the impact of the goal abstraction in the agent's learning efficiency, transferability and interpretability on a set of low-dimensional navigation tasks. In high-dimensional tasks, the abstract goals that be initially too difficult to achieve before refinement. To remedy this issue, we propose a novel algorithm STAR that leverages the reachability-aware spatial abstraction along with a temporal abstraction mechanism allowing for more flexibility on the difficulty of chosen goals. We empirically demonstrate that STAR outperforms the state of the art on a set of difficult continuous control tasks
Denis, Nicholas. „On Hierarchical Goal Based Reinforcement Learning“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39552.
Der volle Inhalt der QuelleMarchal, Cynthie. „Post-hoc prescience: retrospective reasoning and judgment among witnesses of interpersonal aggression“. Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209818.
Der volle Inhalt der QuelleLorsque les témoins jugent une agression interpersonnelle, il est généralement attendu d’eux qu’ils considèrent rationnellement ce qu’une personne raisonnable aurait pu penser, savoir et faire dans pareille situation, et ce en se fondant uniquement sur les preuves qui leur sont fournies. Il n’en reste pas moins que leur analyse sera toutefois tronquée par des biais de jugement et des motivations personnelles. C’est pourquoi la détermination du blâme et l’influence des déformations rétrospectives et évaluatives sont au cœur de cette recherche. Ainsi, nous investiguons plus particulièrement le biais de rétrospection, à savoir l’erreur commune qui laisse à l’individu penser qu’il est en mesure de prévoir n’importe quel événement, alors qu’en réalité, il n’en est rien. Une telle erreur peut cependant avoir de graves conséquences pour la victime dès lors que les témoins sont amenés à croire qu’elle aurait « dû » prévoir ce qui allait survenir. Dans cette thèse, nous envisageons également les modérateurs de ce biais, dont le rôle du contexte communicationnel. Nous avons, dès lors, fait l’hypothèse que le contexte communicationnel pourrait affecter l’angle sous lequel les témoins considèrent l’événement et la distance perçue par rapport à celui-ci. Ce faisant, nous pensions que le biais de rétrospection et le blâme de la victime seraient réduits lorsque le contexte diminuait la distance perçue vis-à-vis de l’événement (en l’occurrence, la distance temporelle et la proximité perçue avec le sort de la victime). De même, il était attendu que l’agresseur soit davantage blâmé dans pareille condition. Les quatre premières études s’intéressaient donc au rôle des buts poursuivis lors de la communication à propos de l’agression, afin d’envisager en quoi décrire comment (vs. pourquoi) l’agression s’était produite aidait à réduire la distance perçue. Une cinquième étude nous a ensuite permis de considérer si la voix passive (versus active) avait aussi un effet similaire. Quant aux quatre dernières études, elles avaient pour objectif d’investiguer dans quelle mesure l’ordre de présentation des informations (connaître la fin avant, vs. après les antécédents) pouvait avoir également une incidence sur la prise de distance par rapport à l’événement et aux jugements. Plus précisément, nous faisions l’hypothèse que connaître l’événement en premier lieu (avant ses antécédents) facilitait la réduction de la distance perçue. Les résultats obtenus dans les cinq premières recherches semblaient confirmer nos hypothèses :Un contexte communicationnel qui réduisait la distance psychologique perçue par rapport à l’événement pouvait non seulement diminuer le biais de rétrospection et le blâme de la victime, mais augmenter aussi le blâme de l’agresseur. Toutefois, les dernières recherches ont semblé démontrer, a contrario, que connaître l’agression en premier lieu pouvait réduire le blâme de l’agresseur et augmenter celui de la victime, alors même que la distance perçue avec les événements était réduite. In fine, ce travail suggère donc que le contexte communicationnel, dans lequel le biais émerge, et la prise de distance face à l’événement négatif sont autant de pistes qu’il faudrait creuser à l’avenir pour mieux comprendre le raisonnement et les jugements rétrospectifs des témoins.
Doctorat en Sciences Psychologiques et de l'éducation
info:eu-repo/semantics/nonPublished
Jardim, David Walter Figueira. „Hierarchical reinforcement learning: learning sub-goals and state-abstraction“. Master's thesis, 2010. http://hdl.handle.net/10071/2866.
Der volle Inhalt der QuelleHuman beings have the incredible capability of creating and using abstractions. With these abstractions we are able to solve extremely complex tasks that require a lot of foresight and planning. Research in Hierarchical Reinforcement Learning has demonstrated the utility of abstractions, but, it also has introduced a new problem. How can we find a way to autonomously discover and create useful abstractions while learning? In this dissertation we present a new method that allows an agent to discover and create temporal abstractions autonomously based in the options framework. Our method is based on the concept that to reach the goal, the agent must pass through certain states. Throughout time these states will begin to differentiate from others, and will be detected as useful subgoals and be used by the agent to create new temporal abstractions, whose objective is to help achieve these subgoals. To detect useful subgoals, our method creates intersections between several paths leading to a goal. In order for a task to be solved successfully the agent must pass through certain regions of the state space, these regions will correspond to our definition of subgoals. Our research focused on domains largely used in the study of the utility of temporal abstractions, which is the room-to-room navigation problem, and also the taxi problem. We determined that, in the problems tested, an agent can learn more rapidly in more complex problems by automatically discovering subgoals and creating abstractions without needing a programmer to provide additional information and handcraft the abstractions.
Bücher zum Thema "Goal Abstraction"
Andrew, Nell. Moving Modernism. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190057275.001.0001.
Der volle Inhalt der QuelleHellman, Geoffrey, und Stewart Shapiro. The Matter of Points. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198712749.003.0007.
Der volle Inhalt der QuelleOlejnik, Iwona, Hrsg. Qualitative and quantitative methods in sustainable development. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, 2021. http://dx.doi.org/10.18559/978-83-8211-072-2.
Der volle Inhalt der QuelleGlennan, Stuart. Models, Mechanisms, and How Explanations. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198779711.003.0003.
Der volle Inhalt der QuelleGarland, Baalla. Congratulations on Your New Job Abstractor: Abstractor Gift - Blank Lined Notebook Job Congratulations Gifts. This Journal Is a Perfect for Taking Notes, Ideas, Writing Goals and Plans, or Writing Diary. Independently Published, 2021.
Den vollen Inhalt der Quelle findenWilliams, Scott M. John Duns Scotus. Herausgegeben von William J. Abraham und Frederick D. Aquino. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199662241.013.12.
Der volle Inhalt der QuelleHaskell, Ellen. A Composite Countenance. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190636647.003.0007.
Der volle Inhalt der QuelleButz, Martin V., und Esther F. Kutter. How the Mind Comes into Being. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Goal Abstraction"
Okubo, Yoshiaki, und Makoto Haraguchi. „Constructing predicate mappings for Goal-Dependent Abstraction“. In Lecture Notes in Computer Science, 516–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58520-6_87.
Der volle Inhalt der QuelleBarth, Max, Daniel Dietsch, Matthias Heizmann und Marie-Christine Jakobs. „Ultimate TestGen: Test-Case Generation with Automata-based Software Model Checking (Competition Contribution)“. In Fundamental Approaches to Software Engineering, 326–30. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57259-3_20.
Der volle Inhalt der QuelleYang, Pengfei, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue und Lijun Zhang. „Improving Neural Network Verification through Spurious Region Guided Refinement“. In Tools and Algorithms for the Construction and Analysis of Systems, 389–408. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_21.
Der volle Inhalt der QuelleCirisci, Berk, Constantin Enea und Suha Orhun Mutluergil. „Quorum Tree Abstractions of Consensus Protocols“. In Programming Languages and Systems, 337–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30044-8_13.
Der volle Inhalt der QuelleBertrand, Yannis, Bram Van den Abbeele, Silvestro Veneruso, Francesco Leotta, Massimo Mecella und Estefanía Serral. „A Survey on the Application of Process Mining to Smart Spaces Data“. In Lecture Notes in Business Information Processing, 57–70. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27815-0_5.
Der volle Inhalt der QuelleMüller, Rainer, und Martin Karkowski. „Generic Modeling Technique for Flexible and Highly Available Assembly Systems“. In Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 3–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_1.
Der volle Inhalt der QuelleMaranhão Junior, João José, Filipe F. Correia und Eduardo Martins Guerra. „Can ChatGPT Suggest Patterns? An Exploratory Study About Answers Given by AI-Assisted Tools to Design Problems“. In Lecture Notes in Business Information Processing, 130–38. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-72781-8_14.
Der volle Inhalt der QuelleDorst, Leo. „Bottom-up derivation of the qualitatively different behaviors of a car across varying spatio-temporal scales: A study in abstraction of goal-directed motion“. In Algebraic Frames for the Perception-Action Cycle, 344–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0017877.
Der volle Inhalt der QuelleCasas, Robert D. Thompson. „Applying DATEMATS Methods and Tools to Nanomaterials: A Design Challenge by the Company Antolin“. In Materialising the Future, 83–101. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25207-5_5.
Der volle Inhalt der QuelleSuazo Laguna, Harold Agusto. „An Autobiographical Perspective on Community-Based Participatory Research, an Approach for More Inclusive Research in Nicaragua“. In Sustainable Development Goals Series, 243–54. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-53793-6_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Goal Abstraction"
Ilcheva, Irena, Vesela Zaharieva, Anna Yordanova und Snejanka Balabanova. „CATCHMENT ABSTRACTION MANAGEMENT STRATEGY AND ECOLOGICAL FLOW DETERMINATION IN CASE OF NATURA 2000 AREAS“. In 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 49–58. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/3.1/s12.06.
Der volle Inhalt der QuelleMuhammad, Umar Riaz, Yongxin Yang, Timothy Hospedales, Tao Xiang und Yi-Zhe Song. „Goal-Driven Sequential Data Abstraction“. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00016.
Der volle Inhalt der QuelleCui, Zhenhe, Yongmei Liu und Kailun Luo. „A Uniform Abstraction Framework for Generalized Planning“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/253.
Der volle Inhalt der QuelleDelgado, H. Mayela, Francisca Losavio und Alfredo Matteo. „Goal oriented techniques and methods: Goal refinement and levels of abstraction“. In 2013 Latin American Computing Conference (CLEI). IEEE, 2013. http://dx.doi.org/10.1109/clei.2013.6670631.
Der volle Inhalt der QuelleSurynek, Pavel. „Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning“. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023. http://dx.doi.org/10.1109/iros55552.2023.10341952.
Der volle Inhalt der QuelleKim, Donghoon, Minjong Yoo und Honguk Woo. „Offline Policy Learning via Skill-step Abstraction for Long-horizon Goal-Conditioned Tasks“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/473.
Der volle Inhalt der QuelleZadem, Mehdi, Sergio Mover und Sao Mai Nguyen. „Goal Space Abstraction in Hierarchical Reinforcement Learning via Set-Based Reachability Analysis“. In 2023 IEEE International Conference on Development and Learning (ICDL). IEEE, 2023. http://dx.doi.org/10.1109/icdl55364.2023.10364473.
Der volle Inhalt der QuelleOkubo, Yoshiaki, und Makoto Haraguchi. „Attacking legal argument by examining stability of case citation with goal-dependent abstraction“. In the sixth international conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/261618.261652.
Der volle Inhalt der QuelleBanihashemi, Bita, Giuseppe De Giacomo und Yves Lesperance. „Abstraction of Nondeterministic Situation Calculus Action Theories“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/347.
Der volle Inhalt der QuelleBanihashemi, Bita, Giuseppe De Giacomo und Yves Lespérance. „Abstraction of Agents Executing Online and their Abilities in the Situation Calculus“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/235.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Goal Abstraction"
Pham, H., T. Budge und R. Nell. Predictive Flow Simulation with the P2R Model for the 200-IA-1 Preliminary Remediation Goal Saturated Zone Abstraction. Office of Scientific and Technical Information (OSTI), Januar 2022. http://dx.doi.org/10.2172/1842314.
Der volle Inhalt der QuelleSinfield, Joseph, und Romika Kotian. Framing Complex Challenges. Purdue University, August 2023. http://dx.doi.org/10.5703/1288284317649.
Der volle Inhalt der QuellePoloboc, Alina. Fancy Pink Goat. Intellectual Archive, Dezember 2023. http://dx.doi.org/10.32370/iaj.2998.
Der volle Inhalt der Quelle