Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „GMP-Clinical Grade Processing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "GMP-Clinical Grade Processing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "GMP-Clinical Grade Processing"
Wright, Adrienne, Orman L. Snyder, Lane K. Christenson, Hong He und Mark L. Weiss. „Effect of Pre-Processing Storage Condition of Cell Culture-Conditioned Medium on Extracellular Vesicles Derived from Human Umbilical Cord-Derived Mesenchymal Stromal Cells“. International Journal of Molecular Sciences 23, Nr. 14 (13.07.2022): 7716. http://dx.doi.org/10.3390/ijms23147716.
Der volle Inhalt der QuelleAssenmacher, Mario, Nadine Mockel-Tenbrinck, Alexander Scheffold, Georg Rauser, Hermann Bohnenkamp, Jürgen Schmitz, Uwe Odenthal, Bergendahl Veit, Ulrike Kolrep und Melanie Fahrendorff. „New GMP-Grade, Xeno-Component Free Medium for the Activation and Expansion of T Cells“. Blood 118, Nr. 21 (18.11.2011): 4316. http://dx.doi.org/10.1182/blood.v118.21.4316.4316.
Der volle Inhalt der QuelleRadke, Teja F., Anja Buchheiser, Aurélie Lefort, Mahtab Maleki, Peter Wernet und Gesine Kögler. „GMP-Conform Generation and Cultivation of Unrestricted Somatic Stems Cells (USSC) from Cord Blood Using the SEPAX©-Separation Method a Closed Culture System Applying Cell Stacks.“ Blood 110, Nr. 11 (16.11.2007): 1211. http://dx.doi.org/10.1182/blood.v110.11.1211.1211.
Der volle Inhalt der QuelleGaja, Vijay, Jacqueline Cawthray, Clarence R. Geyer und Humphrey Fonge. „Production and Semi-Automated Processing of 89Zr Using a Commercially Available TRASIS MiniAiO Module“. Molecules 25, Nr. 11 (05.06.2020): 2626. http://dx.doi.org/10.3390/molecules25112626.
Der volle Inhalt der QuelleVan der Loo, Johannes C. M., William Swaney, Diana Nordling, Axel Schambach, Christopher Baum, David A. Williams, Lilith Reeves und Punam Malik. „Production of High Titer cGMP-Grade SIN Gamma-Retroviral Vectors by Transfection in a Closed System Bioreactor“. Blood 112, Nr. 11 (16.11.2008): 3539. http://dx.doi.org/10.1182/blood.v112.11.3539.3539.
Der volle Inhalt der QuelleParchment, Ralph E., Robert J. Kinders, Jiuping Jay Ji, Apurva K. Srivastava, Katherine V. Ferry-Galow, Joseph E. Tomaszewski und James H. Doroshow. „Creating clinical target validation groups via quality assured transfer of robust clinical pharmacodynamic (PD) assays from the NCI: Clinical implementation of a PAR immunoassay in tumor biopsies.“ Journal of Clinical Oncology 31, Nr. 15_suppl (20.05.2013): e22080-e22080. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e22080.
Der volle Inhalt der QuelleBecker, Fabienne, Rigveda Bhave, Soraia Martins, Melanie Hühne, Boris Greber und Gesine Kogler. „Abstract 12: Cord Blood Banking, Technical and Clinical grade GMP- Development of Advanced Therapy Products as HLA-Homozygous iPSC-derived Cardiomyocytes“. Stem Cells Translational Medicine 13, Supplement_1 (21.08.2024): S14. http://dx.doi.org/10.1093/stcltm/szae062.012.
Der volle Inhalt der QuelleZandvliet, Maarten L., J. H. Frederik Falkenburg, Inge Jedema, Roelof Willemze, Henk-Jan Guchelaar und Pauline Meij. „Generation of GMP-Grade CMV pp65-Specific CD8+ and CD4+ Donor T Cell Lines for Treatment of CMV Reactivation after Transplantation.“ Blood 108, Nr. 11 (16.11.2006): 2931. http://dx.doi.org/10.1182/blood.v108.11.2931.2931.
Der volle Inhalt der QuelleBarz Leahy, Allison, Jennifer Brogdon, Lucy Cain, Amanda M. Dinofia, Joseph A. Fraietta, Richard Hanna, Stephan Kadauke et al. „Cost-Effective Manufacture and Promising Initial Efficacy of huCART19 Cells Manufactured Using the Clinimacs Prodigy Platform“. Blood 144, Supplement 1 (05.11.2024): 3470. https://doi.org/10.1182/blood-2024-204300.
Der volle Inhalt der QuelleCalmeiro, João, Mylène Carrascal, Luís Mendes, Iola F. Duarte, Célia Gomes, João Serra, Amilcar Falcão, Maria Teresa Cruz und Bruno Miguel Neves. „Development of a novel dendritic cell-based immunotherapy targeting cancer stem cells.“ Journal of Clinical Oncology 37, Nr. 15_suppl (20.05.2019): e14009-e14009. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14009.
Der volle Inhalt der QuelleDissertationen zum Thema "GMP-Clinical Grade Processing"
Kouhil, Menasria Naziha. „Islet Cell Purification Systems : Integration of Novel Repurposed GMP Closed-System Technologies from Evaluation to Patent Implementation“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS083.
Der volle Inhalt der QuelleThe optimization of islet cell purification is crucial for advancing cell-based therapies for type 1 diabetes, requiring innovative, GMP-compliant technologies to improve process efficiency, automation, and scalability. This thesis evaluates two key technologies used in islet purification. The first study evaluates the impact of a novel cooling system on the islet cell purification process. This system ensures precise temperature control during density gradient purification by providing pressurized cooling, effectively stabilizing the temperature while maintains the sterility of the GMP cleanroom environment. As a cost-effective and minimally invasive solution, this cooling system holds promises to cool another cell therapy equipment the majority of which offer no cooling option.The core focus of My thesis is the repurposing of the Sepax 2C Pro- Sefia system, a closed-system technology originally developed for hematopoietic stem cell processing, for human islet cell purification. With the Cobe 2991 system being phased out in Europe by 2025 and globally by 2031, the Sepax 2 - Sefia platform offers a fully automated, GMP-compliant alternative. It automates key steps in the islet purification process, reduces manual handling, and improves process reproducibility, making it a ground-breaking solution for both clinical and research applications in islet transplantation. Building on the findings a patent: “Systems and Methods for Tissue Processing,” was filed to protect the novel approach developed for the repurposed Sepax 2 - Sefia system ensuring the intellectual property is secured and facilitating the future application of this system in clinical settings. Through the integration of these technological advancements, including a patented method for tissue processing, this thesis provides a comprehensive framework to replace the Cobe 2991 system, ensuring the continuity of clinical islet isolation and contributing to more effective therapies for patients with type1 diabetes (allografts) but also patients with pancreatic pathologies (autografts)