Dissertationen zum Thema „Glycosidic bonds“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-19 Dissertationen für die Forschung zum Thema "Glycosidic bonds" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Baker, Anne. „The chemo-enzymatic synthesis of glycosidic bonds“. Thesis, University of Exeter, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294484.
Der volle Inhalt der QuelleWebberley, Matthew Christian. „The stereospecific synthesis of glycosidic bonds using glycosidases“. Thesis, University of Exeter, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303771.
Der volle Inhalt der QuelleHenderson, Margaret Esther. „Mechanisms of alkaline glycosidic bond cleavage in 1,5-anhydro-4-O-“. Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5744.
Der volle Inhalt der QuelleDeshpande, Sagar Nandkumar. „Pre-hydrolysis of the Phenyl Glycosidic Bond in a Model Compound“. Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/DeshpandeSN2008.pdf.
Der volle Inhalt der QuelleTennant-Eyles, Richard J. „Peptide templated oligosaccharide synthesis : a novel strategy for glycosidic bond formation“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365751.
Der volle Inhalt der QuelleCollins, James P. „Prebiotic Synthesis of Pyrimidine Nucleosides“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14095.
Der volle Inhalt der QuelleMolinarolo, William E. „The high temperature alkaline degradation of phenyl β-D-glucopyranoside“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/5753.
Der volle Inhalt der QuelleCallam, Christopher Stephen. „Experimental and Theoretical Studies of: Methyl 4a-carba-D-arabinofuranosides and 2,3-Anydrosugars in Glycoside Bond Synthesis“. The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1048691172.
Der volle Inhalt der QuelleMendoza, Muñoz María Fernanda. „Estudios teóricos y computacionales para la síntesis enzimática del enlace glicosídico“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/400072.
Der volle Inhalt der QuelleIn the present thesis the catalytic mechanism of retaining glycosyltransferases has been investigated by means of hybrid quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations. The research is focused on the evaluation of the mechanistic proposals, as well as the identification of the main factors that contribute to the catalytic efficiency. For that we use two enzymes, α1,4-N-Acetylhexosaminyltransferase (EXTL2) and Mycobacterium Tuberculosis Glucosyl-3-phosphoglycerate Synthase (GpgS). Moreover, further simulations using in silico models built based on the native or mutant enzymes were carried out to unveil the roles of the residues located in one of the faces of the transferable substrate (β-face of the sugar). The results for GpgS are exposed in Chapter 4 and the results for EXTL2 are presented through Chapters 5 and 6. In Chapter 7, two other retaining glycosyltransferases investigated in a previous thesis of the group (LgtC and α3GalT), along with EXTL2 and GpgS are studied and compared to further analyse the structural features in the β-face of the sugar and its implications on the catalytic mechanism. A general discussion around the main factors modulating the catalytic efficiency in each enzyme is also included in this Chapter, providing in this way a more complete and general picture about the catalytic strategies performed by retaining glycosyltransferases. Finally, the general conclusions of this work are outlined in Chapter 8. Part of the results presented in this thesis is already published and can be found in the following papers: • Albesa-Jove, D.; Mendoza, F.; Rodrigo-Unzueta, A.; Gomollon-Bel, F.; Cifuente, J. O.; Urresti, S.; Comino, N.; Gómez, H.; Romero-Garcia, J.; Lluch, J. M.; Sancho-Vaello, E.; Biarnes, X.; Planas, A.; Merino, P.; Masgrau, L.; Guerin, M. E. Angew. Chem. Int. Ed. 2015, 54, 9898-9902. • Gómez, H.; Mendoza, F.; Lluch, J. M.; Masgrau, L. Advances in protein chemistry and structural biology 2015, 100, 225-254. • Mendoza, F.; Gómez, H.; Lluch, J. M.; Masgrau, L. Acs Catalysis 2016, 6, 2577-2589.
Bruneau, Alexandre. „Développement de nouvelles réactions métallo-catalysées pour la création de liaisons C-C et C-hétéroatomes : Application à la synthèse d’inhibiteurs de la Hsp90 et aux ligands de la lectine A“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS138.
Der volle Inhalt der QuelleThe work reported in this dissertation concerns the development of new metal-catalyzed reactions for the creation of carbon-heteroatom and carbon-carbon bonds as well as their applications to the synthesis of biologically active products.The first part of this manuscript is devoted to the study of the reactivity of sugars as nucleophiles in organometallic couplings. Conditions were developed for the creation of the C-S bond between glycosyl thiols and aryl partners. Moreover, the creation of the nitrogen carbon bond of glycosyl amine with boronic acids was studied. The products synthesized in this first part have been evaluated for their potential to inhibit the lectin A, in Pseudomonas aeruginosa related lung infections.The second part of this work is dedicated to the creation of a new series of 6BrCaQ analogues as Hsp90 inhibitors and their biological evaluation. This new series was synthetized through a new CH activation methodology. The antitumoral potential was evaluated and will be presented in this manuscript
Bean, Heather D. „Prebiotic synthesis of nucleic acids“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28259.
Der volle Inhalt der QuelleCommittee Chair: Hud, Nicholas V.; Committee Member: Fox, Ronald F.; Committee Member: Lynn, David G.; Committee Member: Powers, James C.; Committee Member: Wartell, Roger M.; Committee Member: Williams, Loren D.
Cornu, Agnès. „Synthèse et biosynthèse de composés modèles de complexes lignine-polysaccharides“. Grenoble 1, 1989. http://www.theses.fr/1989GRE10051.
Der volle Inhalt der QuelleOuairy, Cécile. „Synthèse de nouveaux glycoimidazoles, inhibiteurs potentiels de glycosidases : préparation et utilisation en synthèse de glutaconaldéhydes oxydés en position 2 et de N-acylaminopentadiénals“. Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00750565.
Der volle Inhalt der QuelleLee, Seung Seo. „Mechanism of glycoside hydrolase family 31 : mechanistic plasticity of glycosidic bond cleavage“. Thesis, 2004. http://hdl.handle.net/2429/15979.
Der volle Inhalt der QuelleScience, Faculty of
Chemistry, Department of
Graduate
Daskhan, Gour Chand. „C-2 And C-4 Branched Carbohydrates : (i) Synthesis And Studies Of Oligosacchardes With Expanded Glycosidic Linkage At C-4; (ii) Synthesis Of 2-Deoxy-2-C-Alkyl Glycopyranosides“. Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2462.
Der volle Inhalt der QuelleDey, Supriya. „Synthesis, Conformation and Glycosidic Bond Stabilities of Septanoside Sugars“. Thesis, 2014. http://hdl.handle.net/2005/2898.
Der volle Inhalt der QuelleSung, Ming-Ju, und 宋明儒. „Effects of glycosidic bond on the ozonolysis of disaccharides“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/04029993873742303865.
Der volle Inhalt der Quelle國立臺灣大學
食品科技研究所
91
Four different disaccharides, maltose, trehalose, cellobiose, and chitobiose were used to study the effect of glycosidic bond, α-1, 4, α-1, 1, β-1, 4 on the ozonolysis of disaccharides. The yields of monosaccharides from maltose and cellobiose were similar. That indicated theαorβ form of glycosidic bond did not contribute the difference in ozonolysis. The yield of monosaccharides from trehalose was higher than three from both maltose and cellobiose. The data indicated thatα-1, 1 of glycosidic bond was more favorable during ozonolysis.Chitobiose yield more monosacchadises than cellobiose. The presence of amino group enhanced the production of glucosamine. The degradation rate was increased with the ozone dosade and the initial concentration of disaccharides. At 70℃℃, the yield of glucose from trehalose at initial concentration of 0.5 % was higher than that at the initial concentration of 0.06 %. Nevertheless, the variation in ozone dosage did not alter the reaction orders in the range from 0.7 to 1.1. The analysis from FTIR revealed the presence of carboxylic acid. The formation and inhibitor of carboxylic acid are worthy of further studies.
Liang, Chien-Fu, und 梁健夫. „Synthesis of Oligosialic Acids via Exclusive α S-Glycosidic Bond Fromation“. Thesis, 2009. http://ndltd.ncl.edu.tw/handle/88633395019214966491.
Der volle Inhalt der Quelle國立清華大學
化學系
97
摘 要 自然界存在之聚唾液酸醣苷鍵形式主要有三種,α(2→8)與α(2→9)醣鍵結形式,以及α(2→8)/ α(2→9)醣鍵結交錯出現形式。最近在醣生物學研究上指出,出現在細胞表面的α(2→8)和α(2→9) 醣鍵形式的雙醣及寡醣在生物方面上扮演重要的角色。然而這些醣類在溫和的酸性或鹼性條件下是不穩定的,而且容易被醣水解酶影響而水解。因此,硫鍵結之醣苷分子已經被提出用來增強被化學或酵素水解之醣苷鍵結的穩定度。 本論文的目標是發展便利的策略來合成硫鍵結之唾液酸寡糖抗原。我們發展了一個不對稱的異丁基雙硫鍵來當作變旋異位性(anomeric)硫原子的保護基,並利用此新方法來合成硫鍵結α(2→9)唾液酸寡糖。比較一般傳統在唾液酸變旋異位性硫原子的保護基,我們所使用的不對稱異丁基雙硫鍵保護基能夠承受在官能基轉換過程中而不會產生不飽和鍵的脫去產物。此外,不對稱異丁基雙硫鍵保護基可以有效率的去保護而在變旋異位中心產生具有硫醇的親核試劑,並且不會造成變旋異位中心的變旋異構化。我們實驗室藉由這個方法已經成功合成了4-,6-,8-硫鍵結α(2→9)唾液酸寡糖。 除此之外,藉由硫親核反應來發展合成硫鍵結之α(2→8)以及α(2→8)/α(2→9)三醣體,這些方法包含利用C2-硫基化之唾液酸醣苷分子當做親核試劑以及C8-碘基化之唾液酸醣苷分子當做活性化之親電試劑,來進行化學及立體選擇性之烷基化反應。此外,我們也發展了一個有效的轉移方法,在溫和的鹼性條件下將唾液酸醣苷分子七號位置的乙醯基官能基轉換至九號位置上。接著利用二氯二甲基矽烷和碘化鈉的條件下將乙醯基轉移之唾液酸醣苷分子在八號位置上進行碘基化反應。藉由這些方法,我們已經合成了硫鍵結α(2→8)唾液酸三醣體以及α(2→8)/ α(2→9)唾液酸三醣體。 由於已經成功合成了硫鍵結之α(2→9)唾液酸寡醣體,將合成的硫代抗原和載體蛋白(KLH)進行結合也在疫苗發展上被研究。藉由MHSu(6-maleimidohexanoic acid active ester)裝配在硫鍵結之α(2→9)唾液酸寡醣體,接著與硫基化之載體蛋白(KLH)進行結合,我們利用此新穎與有效的方法來製備碳水化合物結合疫苗。另外,我們也使用Ellmans試劑去定量有多少硫鍵結之α(2→9)唾液酸醣苷分子在載體蛋白(KLH)上面。這些方法可以普遍適用在合成的寡糖上面。
Maiti, Krishnagopal. „Synthesis, Structural and Biophysical Studies of Oligosaccharide Glycolipids and Glycosidic Bond Expanded Cyclic Oligosaccharides“. Thesis, 2016. http://hdl.handle.net/2005/3117.
Der volle Inhalt der Quelle