Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Glycosidic bonds“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Glycosidic bonds" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Glycosidic bonds"
Wang, Qian, Chao Gao, Nan Yang und Katsuyoshi Nishinari. „Effect of simulated saliva components on the in vitro digestion of peanut oil body emulsion“. RSC Advances 11, Nr. 49 (2021): 30520–31. http://dx.doi.org/10.1039/d1ra03274g.
Der volle Inhalt der QuelleJoseleau, Jean-Paul, und Rachid Kesraoui. „Glycosidic Bonds between Lignin and Carbohydrates“. Holzforschung 40, Nr. 3 (Januar 1986): 163–68. http://dx.doi.org/10.1515/hfsg.1986.40.3.163.
Der volle Inhalt der QuelleJohnson, Glenn P., Luis Petersen, Alfred D. French und Peter J. Reilly. „Twisting of glycosidic bonds by hydrolases“. Carbohydrate Research 344, Nr. 16 (November 2009): 2157–66. http://dx.doi.org/10.1016/j.carres.2009.08.011.
Der volle Inhalt der QuelleKhalilova, Gulnoza Abduvakhobovna, Abbaskhan Sabirkhanovich Turaev, Bahtiyor Ikromovich Muhitdinov, Albina Vasilevna Filatova, Saidakhon Bokijonovna Haytmetova und Nodirali Sokhobatalievich Normakhamatov. „Research On The Composition And Structure Of Β -Glucans Isolated From Basidiomycete Raw Materials Inonotus Hispidus“. American Journal of Applied sciences 03, Nr. 01 (19.01.2021): 9–17. http://dx.doi.org/10.37547/tajas/volume03issue01-03.
Der volle Inhalt der QuelleWeignerová, Lenka, Yukio Suzuki, Zdenka Huňková, Petr Sedmera, Vladimír Havlíček, Radek Marek und Vladimír Křen. „Pyridoxine as a Substrate for Screening Synthetic Potential of Glycosidases“. Collection of Czechoslovak Chemical Communications 64, Nr. 8 (1999): 1325–34. http://dx.doi.org/10.1135/cccc19991325.
Der volle Inhalt der QuelleKobayashi, Hirokazu, Yusuke Suzuki, Takuya Sagawa, Kyoichi Kuroki, Jun-ya Hasegawa und Atsushi Fukuoka. „Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin“. Physical Chemistry Chemical Physics 23, Nr. 30 (2021): 15908–16. http://dx.doi.org/10.1039/d1cp01650d.
Der volle Inhalt der QuelleFrański, R., P. Bednarek, D. Siatkowska, P. Wojtaszek und M. Stobiecki. „Application of mass spectrometry to structural identification of flavonoid monoglycosides isolated from shoot of lupin (Lupinus luteus L.).“ Acta Biochimica Polonica 46, Nr. 2 (30.06.1999): 459–73. http://dx.doi.org/10.18388/abp.1999_4177.
Der volle Inhalt der QuelleHe, Xingxing, Fuyuan Zhang, Jifeng Liu, Guozhen Fang und Shuo Wang. „Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase“. Nanoscale 9, Nr. 45 (2017): 18066–74. http://dx.doi.org/10.1039/c7nr06525f.
Der volle Inhalt der QuelleDavies, Gideon J., Simon J. Charnock und Bernard Henrissat. „The Enzymatic Synthesis of Glycosidic Bonds: "Glycosynthases" and Glycosyltransferases.“ Trends in Glycoscience and Glycotechnology 13, Nr. 70 (2001): 105–20. http://dx.doi.org/10.4052/tigg.13.105.
Der volle Inhalt der QuelleIbatullin, Farid M., Alexander M. Golubev, Leonid M. Firsov und Kirill N. Neustroev. „A model for cleavage ofO-glycosidic bonds in glycoproteins“. Glycoconjugate Journal 10, Nr. 3 (Juni 1993): 214–18. http://dx.doi.org/10.1007/bf00702202.
Der volle Inhalt der QuelleDissertationen zum Thema "Glycosidic bonds"
Baker, Anne. „The chemo-enzymatic synthesis of glycosidic bonds“. Thesis, University of Exeter, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294484.
Der volle Inhalt der QuelleWebberley, Matthew Christian. „The stereospecific synthesis of glycosidic bonds using glycosidases“. Thesis, University of Exeter, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303771.
Der volle Inhalt der QuelleHenderson, Margaret Esther. „Mechanisms of alkaline glycosidic bond cleavage in 1,5-anhydro-4-O-“. Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5744.
Der volle Inhalt der QuelleDeshpande, Sagar Nandkumar. „Pre-hydrolysis of the Phenyl Glycosidic Bond in a Model Compound“. Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/DeshpandeSN2008.pdf.
Der volle Inhalt der QuelleTennant-Eyles, Richard J. „Peptide templated oligosaccharide synthesis : a novel strategy for glycosidic bond formation“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365751.
Der volle Inhalt der QuelleCollins, James P. „Prebiotic Synthesis of Pyrimidine Nucleosides“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14095.
Der volle Inhalt der QuelleMolinarolo, William E. „The high temperature alkaline degradation of phenyl β-D-glucopyranoside“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/5753.
Der volle Inhalt der QuelleCallam, Christopher Stephen. „Experimental and Theoretical Studies of: Methyl 4a-carba-D-arabinofuranosides and 2,3-Anydrosugars in Glycoside Bond Synthesis“. The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1048691172.
Der volle Inhalt der QuelleMendoza, Muñoz María Fernanda. „Estudios teóricos y computacionales para la síntesis enzimática del enlace glicosídico“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/400072.
Der volle Inhalt der QuelleIn the present thesis the catalytic mechanism of retaining glycosyltransferases has been investigated by means of hybrid quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations. The research is focused on the evaluation of the mechanistic proposals, as well as the identification of the main factors that contribute to the catalytic efficiency. For that we use two enzymes, α1,4-N-Acetylhexosaminyltransferase (EXTL2) and Mycobacterium Tuberculosis Glucosyl-3-phosphoglycerate Synthase (GpgS). Moreover, further simulations using in silico models built based on the native or mutant enzymes were carried out to unveil the roles of the residues located in one of the faces of the transferable substrate (β-face of the sugar). The results for GpgS are exposed in Chapter 4 and the results for EXTL2 are presented through Chapters 5 and 6. In Chapter 7, two other retaining glycosyltransferases investigated in a previous thesis of the group (LgtC and α3GalT), along with EXTL2 and GpgS are studied and compared to further analyse the structural features in the β-face of the sugar and its implications on the catalytic mechanism. A general discussion around the main factors modulating the catalytic efficiency in each enzyme is also included in this Chapter, providing in this way a more complete and general picture about the catalytic strategies performed by retaining glycosyltransferases. Finally, the general conclusions of this work are outlined in Chapter 8. Part of the results presented in this thesis is already published and can be found in the following papers: • Albesa-Jove, D.; Mendoza, F.; Rodrigo-Unzueta, A.; Gomollon-Bel, F.; Cifuente, J. O.; Urresti, S.; Comino, N.; Gómez, H.; Romero-Garcia, J.; Lluch, J. M.; Sancho-Vaello, E.; Biarnes, X.; Planas, A.; Merino, P.; Masgrau, L.; Guerin, M. E. Angew. Chem. Int. Ed. 2015, 54, 9898-9902. • Gómez, H.; Mendoza, F.; Lluch, J. M.; Masgrau, L. Advances in protein chemistry and structural biology 2015, 100, 225-254. • Mendoza, F.; Gómez, H.; Lluch, J. M.; Masgrau, L. Acs Catalysis 2016, 6, 2577-2589.
Bruneau, Alexandre. „Développement de nouvelles réactions métallo-catalysées pour la création de liaisons C-C et C-hétéroatomes : Application à la synthèse d’inhibiteurs de la Hsp90 et aux ligands de la lectine A“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS138.
Der volle Inhalt der QuelleThe work reported in this dissertation concerns the development of new metal-catalyzed reactions for the creation of carbon-heteroatom and carbon-carbon bonds as well as their applications to the synthesis of biologically active products.The first part of this manuscript is devoted to the study of the reactivity of sugars as nucleophiles in organometallic couplings. Conditions were developed for the creation of the C-S bond between glycosyl thiols and aryl partners. Moreover, the creation of the nitrogen carbon bond of glycosyl amine with boronic acids was studied. The products synthesized in this first part have been evaluated for their potential to inhibit the lectin A, in Pseudomonas aeruginosa related lung infections.The second part of this work is dedicated to the creation of a new series of 6BrCaQ analogues as Hsp90 inhibitors and their biological evaluation. This new series was synthetized through a new CH activation methodology. The antitumoral potential was evaluated and will be presented in this manuscript
Bücher zum Thema "Glycosidic bonds"
Henderson, Margaret Esther. Mechanisms of alkaline glycosidic bond cleavage in 1,5-anhydro-4-O- -mannopyranosyl-D-mannitol. 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Glycosidic bonds"
Monti, Daniela, und Sergio Riva. „Hydrolysis and Formation of Glycosidic Bonds“. In Enzyme Catalysis in Organic Synthesis, 417–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch10.
Der volle Inhalt der QuellePinto, José-Henrique Q., Zin-Eddine Dadach, Alain Lemoyne und Serge Kaliaguine. „Acid Hydrolysis of Glycosidic Bonds in Polysaccharides: Modelling and Stochastic Simulation“. In Advances in Thermochemical Biomass Conversion, 1583–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_129.
Der volle Inhalt der QuelleGooch, Jan W. „Glycosidic Bond“. In Encyclopedic Dictionary of Polymers, 896. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13849.
Der volle Inhalt der QuellePengelly, Andrew. „Glycosides.“ In The constituents of medicinal plants, 59–72. 3. Aufl. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0004.
Der volle Inhalt der QuelleMiljković, Momčilo. „Chemistry of the Glycosidic Bond“. In Carbohydrates, 323–421. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-92265-2_12.
Der volle Inhalt der QuelleAharoni, Amir, und Stephen G. Withers. „Screening Methodologies for Glycosidic Bond Formation“. In Protein Engineering Handbook, 605–20. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634026.ch25.
Der volle Inhalt der QuelleYe, Xin-Shan, und Weigang Lu. „GENERAL ASPECTS IN O-GLYCOSIDIC BOND FORMATION“. In Glycochemical Synthesis, 69–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119006435.ch3.
Der volle Inhalt der QuelleMiljkovic, Momcilo. „Armed-Disarmed Concept in the Synthesis of Glycosidic Bond“. In Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry, 117–79. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-8268-0_5.
Der volle Inhalt der QuelleSchmidt, Richard R., Simon Jonke und Ke-gang Liu. „New Aspects of Glycoside Bond Formation: Solid-Phase Oligosaccharide Synthesis“. In ACS Symposium Series, 209–36. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0960.ch013.
Der volle Inhalt der QuellePriebe, Waldemar, Piotr Skibicki, Oscar Varela, Nouri Neamati, Marcos Sznaidman, Krzysztof Dziewiszek, Grzegorz Grynkiewicz et al. „Non-Cross-Resistant Anthracyclines with Reduced Basicity and Increased Stability of the Glycosidic Bond“. In ACS Symposium Series, 14–46. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0574.ch002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Glycosidic bonds"
Withers, Stephen G. „ENZYMATIC CLEAVAGE AND FORMATION OF GLYCOSIDIC BONDS: FROM GLYCOSIDASES AND LYASES TO TRANSFERASES AND GLYCOSYNTHASES“. In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.355.
Der volle Inhalt der QuelleRodgers, M., Jos Oomens, Giel Berden, Chase Leslie, Erik Soley, Harrison Roy, Zachary Devereaux et al. „INFLUENCE OF NATURALLY-OCCURRING AND SYNTHETIC MODIFICATIONS ON THE STRUCTURES AND GLYCOSIDIC BOND STABILITIES OF DNA AND RNA NUCLEOSIDES“. In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.ma02.
Der volle Inhalt der Quelle