Auswahl der wissenschaftlichen Literatur zum Thema „Glycosidic bonds“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Glycosidic bonds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Glycosidic bonds":

1

Wang, Qian, Chao Gao, Nan Yang und Katsuyoshi Nishinari. „Effect of simulated saliva components on the in vitro digestion of peanut oil body emulsion“. RSC Advances 11, Nr. 49 (2021): 30520–31. http://dx.doi.org/10.1039/d1ra03274g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Joseleau, Jean-Paul, und Rachid Kesraoui. „Glycosidic Bonds between Lignin and Carbohydrates“. Holzforschung 40, Nr. 3 (Januar 1986): 163–68. http://dx.doi.org/10.1515/hfsg.1986.40.3.163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Johnson, Glenn P., Luis Petersen, Alfred D. French und Peter J. Reilly. „Twisting of glycosidic bonds by hydrolases“. Carbohydrate Research 344, Nr. 16 (November 2009): 2157–66. http://dx.doi.org/10.1016/j.carres.2009.08.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khalilova, Gulnoza Abduvakhobovna, Abbaskhan Sabirkhanovich Turaev, Bahtiyor Ikromovich Muhitdinov, Albina Vasilevna Filatova, Saidakhon Bokijonovna Haytmetova und Nodirali Sokhobatalievich Normakhamatov. „Research On The Composition And Structure Of Β -Glucans Isolated From Basidiomycete Raw Materials Inonotus Hispidus“. American Journal of Applied sciences 03, Nr. 01 (19.01.2021): 9–17. http://dx.doi.org/10.37547/tajas/volume03issue01-03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This article highlights the conducted researches on the composition and structure of β-glucans isolated from the basidiomycete raw material Inonotus hispidus. By means of using the alditol acetate method, as well as by UV and IR methods, one-dimensional (13C NMR, 1H NMR), two-dimensional (1H-1H COSY, 1H-13C HSQC) NMR spectroscopy, the composition and molecular structure of polysaccharides were determined and their branching was proved. It was clarified that the composition of the polysaccharide fractions consists mainly of glucose residues (68-100%), as well as residues of fructose, xylose, mannose and galactose as minor monosaccharides. NMR spectroscopic studies of the specimens showed that the obtained polysaccharides consist of branched glucan structures linked by α- and β-glycosidic bonds. In the structure of β-glucans, the main chain is linked mainly through β-1,3-, partially β-1,4-glycosidic bonds, the branched parts consist of one or more β-D-glucose residues that are linked β-1,3- glycosidic bonds, as well as with the main chain, mainly through α- or β-1,6-glycosidic bonds. The results of the study of molecular parameters showed that the MW of β-glucans of basidiomycetes are in the range of 9100-9900 Da, MWD - 1.2-1.5.
5

Weignerová, Lenka, Yukio Suzuki, Zdenka Huňková, Petr Sedmera, Vladimír Havlíček, Radek Marek und Vladimír Křen. „Pyridoxine as a Substrate for Screening Synthetic Potential of Glycosidases“. Collection of Czechoslovak Chemical Communications 64, Nr. 8 (1999): 1325–34. http://dx.doi.org/10.1135/cccc19991325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The reactions of glycosidases with pyridoxine were used for testing their ability to make new glycosidic bonds. Of 35 glycosidases examined, some exhibited regiospecificity towards one primary alcoholic group; glycosylation of phenolic hydroxyl group was not observed. A series of new glycosides of pyridoxine, 2-acetamido-2-deoxy-β-D-glucopyranosides, α-D-manno- pyranosides, and one α-D-galactopyranoside were prepared and completely characterized by MS and NMR.
6

Kobayashi, Hirokazu, Yusuke Suzuki, Takuya Sagawa, Kyoichi Kuroki, Jun-ya Hasegawa und Atsushi Fukuoka. „Impact of tensile and compressive forces on the hydrolysis of cellulose and chitin“. Physical Chemistry Chemical Physics 23, Nr. 30 (2021): 15908–16. http://dx.doi.org/10.1039/d1cp01650d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Frański, R., P. Bednarek, D. Siatkowska, P. Wojtaszek und M. Stobiecki. „Application of mass spectrometry to structural identification of flavonoid monoglycosides isolated from shoot of lupin (Lupinus luteus L.).“ Acta Biochimica Polonica 46, Nr. 2 (30.06.1999): 459–73. http://dx.doi.org/10.18388/abp.1999_4177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Flavonoid glycosides constitute important group of plant secondary metabolites. This class of natural products play significant role in different physiological processes. A new methodological approach where mass spectrometric techniques are applied to structural studies of this class of compounds is presented. Four flavonoid O-monoglycosides and one C-monoglycoside were isolated from green parts of lupin (Lupinus luteus L.). Several different mass spectrometric techniques were applied to structural elucidation of isolated compounds. Desorption ionization mass spectrometry was used for registration of mass spectra of intact and derivatized (permethylated) flavonoid glycosides. In some cases electron impact mass spectra of permethylated compounds were also recorded. Methylated samples after methanolysis and further derivatization of free hydroxyl groups (methylation or acetylation) were analyzed with gas chromatography-mass spectrometry. Combined information drawn from the registered mass spectra enabled us to define molecular mass, structure of aglycones and sugars, and positions of glycosidic bonds on the aglycon. Structures of four flavonoid monoglycosides were elucidated as follows: genistein 7-O-glucoside (1), genistein 4'-O-glucoside (2), 2'-hydroxygenistein 7-O-glucoside (3), and apigenin or genistein 8-C-glycoside (5). For the fourth O-glycoside (4) only molecular mass and masses of the aglycone and sugar were estimated.
8

He, Xingxing, Fuyuan Zhang, Jifeng Liu, Guozhen Fang und Shuo Wang. „Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase“. Nanoscale 9, Nr. 45 (2017): 18066–74. http://dx.doi.org/10.1039/c7nr06525f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Davies, Gideon J., Simon J. Charnock und Bernard Henrissat. „The Enzymatic Synthesis of Glycosidic Bonds: "Glycosynthases" and Glycosyltransferases.“ Trends in Glycoscience and Glycotechnology 13, Nr. 70 (2001): 105–20. http://dx.doi.org/10.4052/tigg.13.105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ibatullin, Farid M., Alexander M. Golubev, Leonid M. Firsov und Kirill N. Neustroev. „A model for cleavage ofO-glycosidic bonds in glycoproteins“. Glycoconjugate Journal 10, Nr. 3 (Juni 1993): 214–18. http://dx.doi.org/10.1007/bf00702202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Glycosidic bonds":

1

Baker, Anne. „The chemo-enzymatic synthesis of glycosidic bonds“. Thesis, University of Exeter, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Webberley, Matthew Christian. „The stereospecific synthesis of glycosidic bonds using glycosidases“. Thesis, University of Exeter, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Henderson, Margaret Esther. „Mechanisms of alkaline glycosidic bond cleavage in 1,5-anhydro-4-O-“. Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Deshpande, Sagar Nandkumar. „Pre-hydrolysis of the Phenyl Glycosidic Bond in a Model Compound“. Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/DeshpandeSN2008.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tennant-Eyles, Richard J. „Peptide templated oligosaccharide synthesis : a novel strategy for glycosidic bond formation“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Collins, James P. „Prebiotic Synthesis of Pyrimidine Nucleosides“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The problem of forming a glycosidic bond between ribose and the free nucleoside bases to produce beta-nucleosides under plausible prebiotic conditions is commonly referred to in origin of life research as The Nucleoside Problem. The lack of a general solution to this problem currently represents one of the largest stumbling blocks to the RNA world hypothesis and many other theories regarding the origin of life. Over thirty years ago the purine nucleosides were successfully synthesized by drying the fully-formed bases and ribose together in the presence of divalent metal ion salts. However, glycosidic bond formation by the pyrimidine bases has never been achieved under similar reaction conditions. This thesis describes the first plausible prebiotic synthesis of a pyrimidine nucleoside, demonstrated with the pyrimidine base analogue 2-pyrimidinone. Information provided by nucleoside-formation reaction involving 2-pyrimidinone and related pyrimidine bases should provide valuable insights into the possible mechanism by which glycosidic bond formation was accomplished on the prebiotic Earth.
7

Molinarolo, William E. „The high temperature alkaline degradation of phenyl β-D-glucopyranoside“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/5753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Callam, Christopher Stephen. „Experimental and Theoretical Studies of: Methyl 4a-carba-D-arabinofuranosides and 2,3-Anydrosugars in Glycoside Bond Synthesis“. The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1048691172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mendoza, Muñoz María Fernanda. „Estudios teóricos y computacionales para la síntesis enzimática del enlace glicosídico“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/400072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
En esta tesis se ha investigado el mecanismo catalítico de las glicosiltransferasas que retienen la configuración a través de simulaciones híbridas de mecánica cuántica/mecánica molecular (QM/MM) y dinámicas moleculares (MD). La investigación se centra en la evaluación de las propuestas mecanísticas, además de la identificación de los principales factores que contribuyen a la eficiencia catalítica. Para esto usamos dos enzimas, α1,4-N-Acetilhexosaminiltransferasa (EXTL2) y Glucosil-3-fosfoglicerato Sintasa (GpgS) de Mycobacterium Tuberculosis. Además, se llevaron a cabo simulaciones adicionales de modelos in silico construidos en base a la enzima nativa o mutante para desvelar los roles de los residuos que se encuentran en una de las caras del sustrato transferible (cara β del azúcar). Los resultados de GpgS se exponen en el Capítulo 4 y los resultados de EXTL2 se presentan a lo largo de los Capítulos 5 y 6. En el Capítulo 7, otras dos glicosiltransferasas retenedoras investigadas en una tesis previa del grupo (LgtC y α3GalT), junto a EXTL2 y GpgS son estudiadas y comparadas para analizar con mayor profundidad las características estructurales de la cara β del azúcar y sus implicaciones en el mecanismo catalítico. En este capítulo también se incluye una discusión general sobre los principales factores que modulan la eficiencia catalítica en cada enzima, dando de esta manera, una visión más completa y general acerca de las estrategias catalíticas realizadas por las glicosiltransferasas retenedoras. Finalmente, las conclusiones generales de este trabajo se resumen en el Capítulo 8. Parte de los resultados presentados en esta tesis pueden ser encontrados en las siguientes publicaciones: • Albesa-Jove, D.; Mendoza, F.; Rodrigo-Unzueta, A.; Gomollon-Bel, F.; Cifuente, J. O.; Urresti, S.; Comino, N.; Gómez, H.; Romero-Garcia, J.; Lluch, J. M.; Sancho-Vaello, E.; Biarnes, X.; Planas, A.; Merino, P.; Masgrau, L.; Guerin, M. E. Angew. Chem. Int. Ed. 2015, 54, 9898-9902. • Gomez, H.; Mendoza, F.; Lluch, J. M.; Masgrau, L. Advances in protein chemistry and structural biology 2015, 100, 225-254. • Mendoza, F.; Gomez, H.; Lluch, J. M.; Masgrau, L. Acs Catalysis 2016, 6, 2577-2589.
In the present thesis the catalytic mechanism of retaining glycosyltransferases has been investigated by means of hybrid quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations. The research is focused on the evaluation of the mechanistic proposals, as well as the identification of the main factors that contribute to the catalytic efficiency. For that we use two enzymes, α1,4-N-Acetylhexosaminyltransferase (EXTL2) and Mycobacterium Tuberculosis Glucosyl-3-phosphoglycerate Synthase (GpgS). Moreover, further simulations using in silico models built based on the native or mutant enzymes were carried out to unveil the roles of the residues located in one of the faces of the transferable substrate (β-face of the sugar). The results for GpgS are exposed in Chapter 4 and the results for EXTL2 are presented through Chapters 5 and 6. In Chapter 7, two other retaining glycosyltransferases investigated in a previous thesis of the group (LgtC and α3GalT), along with EXTL2 and GpgS are studied and compared to further analyse the structural features in the β-face of the sugar and its implications on the catalytic mechanism. A general discussion around the main factors modulating the catalytic efficiency in each enzyme is also included in this Chapter, providing in this way a more complete and general picture about the catalytic strategies performed by retaining glycosyltransferases. Finally, the general conclusions of this work are outlined in Chapter 8. Part of the results presented in this thesis is already published and can be found in the following papers: • Albesa-Jove, D.; Mendoza, F.; Rodrigo-Unzueta, A.; Gomollon-Bel, F.; Cifuente, J. O.; Urresti, S.; Comino, N.; Gómez, H.; Romero-Garcia, J.; Lluch, J. M.; Sancho-Vaello, E.; Biarnes, X.; Planas, A.; Merino, P.; Masgrau, L.; Guerin, M. E. Angew. Chem. Int. Ed. 2015, 54, 9898-9902. • Gómez, H.; Mendoza, F.; Lluch, J. M.; Masgrau, L. Advances in protein chemistry and structural biology 2015, 100, 225-254. • Mendoza, F.; Gómez, H.; Lluch, J. M.; Masgrau, L. Acs Catalysis 2016, 6, 2577-2589.
10

Bruneau, Alexandre. „Développement de nouvelles réactions métallo-catalysées pour la création de liaisons C-C et C-hétéroatomes : Application à la synthèse d’inhibiteurs de la Hsp90 et aux ligands de la lectine A“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Les travaux rapportés dans ce mémoire concernent le développement de nouvelles réactions métallo-catalysées pour la création de liaison carbone-hétéroatome et carbone-carbone ainsi que leurs applications à la synthèse de produits biologiquement actifs. La première partie de ce manuscrit est consacrée à l'étude de la réactivité des sucres dans les couplages organométalliques. Des conditions ont été développées pour la création de la liaison C-S entre glycosyl thiols et partenaires arylés. De plus, la création de la liaison carbone azote de glycosyl amines avec des acides boroniques a été étudiée. Les produits synthétisés dans cette première partie ont été évalués pour leur potentiel d'inhibition de la Lectine A chez Pseudomonas aeruginosa, impliquée dans de sévères infections pulmonaires.La seconde partie de ce travail est dédiée à la création d'une série inédite d'analogues du 6BrCaQ, inhibiteurs de la Hsp90 ainsi que leur évaluation biologique. Cette nouvelle série est obtenue grâce à une nouvelle méthodologie de synthèse basée sur l'activation C-H entre un hétérocycle halogéné et son partenaire C-H activable. L'activité antiproliférative et l'inhibition de la Hsp90 ont été évaluées et seront présentées dans ce manuscrit
The work reported in this dissertation concerns the development of new metal-catalyzed reactions for the creation of carbon-heteroatom and carbon-carbon bonds as well as their applications to the synthesis of biologically active products.The first part of this manuscript is devoted to the study of the reactivity of sugars as nucleophiles in organometallic couplings. Conditions were developed for the creation of the C-S bond between glycosyl thiols and aryl partners. Moreover, the creation of the nitrogen carbon bond of glycosyl amine with boronic acids was studied. The products synthesized in this first part have been evaluated for their potential to inhibit the lectin A, in Pseudomonas aeruginosa related lung infections.The second part of this work is dedicated to the creation of a new series of 6BrCaQ analogues as Hsp90 inhibitors and their biological evaluation. This new series was synthetized through a new CH activation methodology. The antitumoral potential was evaluated and will be presented in this manuscript

Bücher zum Thema "Glycosidic bonds":

1

Henderson, Margaret Esther. Mechanisms of alkaline glycosidic bond cleavage in 1,5-anhydro-4-O- -mannopyranosyl-D-mannitol. 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Glycosidic bonds":

1

Monti, Daniela, und Sergio Riva. „Hydrolysis and Formation of Glycosidic Bonds“. In Enzyme Catalysis in Organic Synthesis, 417–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pinto, José-Henrique Q., Zin-Eddine Dadach, Alain Lemoyne und Serge Kaliaguine. „Acid Hydrolysis of Glycosidic Bonds in Polysaccharides: Modelling and Stochastic Simulation“. In Advances in Thermochemical Biomass Conversion, 1583–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gooch, Jan W. „Glycosidic Bond“. In Encyclopedic Dictionary of Polymers, 896. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pengelly, Andrew. „Glycosides.“ In The constituents of medicinal plants, 59–72. 3. Aufl. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Glycosides are a group of compounds consisting of a sugar portion (or moiety) attached by a special bond to one or more non-sugar portions. Chemically, they are hydroxyls of a sugar capable of forming ethers with other alcohols, or esters with acids. This chapter provides information on glycosides, including their distribution throughout the plant kingdom, medicinal properties, and toxicity.
5

Miljković, Momčilo. „Chemistry of the Glycosidic Bond“. In Carbohydrates, 323–421. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-92265-2_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aharoni, Amir, und Stephen G. Withers. „Screening Methodologies for Glycosidic Bond Formation“. In Protein Engineering Handbook, 605–20. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634026.ch25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ye, Xin-Shan, und Weigang Lu. „GENERAL ASPECTS IN O-GLYCOSIDIC BOND FORMATION“. In Glycochemical Synthesis, 69–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119006435.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Miljkovic, Momcilo. „Armed-Disarmed Concept in the Synthesis of Glycosidic Bond“. In Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry, 117–79. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-8268-0_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schmidt, Richard R., Simon Jonke und Ke-gang Liu. „New Aspects of Glycoside Bond Formation: Solid-Phase Oligosaccharide Synthesis“. In ACS Symposium Series, 209–36. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0960.ch013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Priebe, Waldemar, Piotr Skibicki, Oscar Varela, Nouri Neamati, Marcos Sznaidman, Krzysztof Dziewiszek, Grzegorz Grynkiewicz et al. „Non-Cross-Resistant Anthracyclines with Reduced Basicity and Increased Stability of the Glycosidic Bond“. In ACS Symposium Series, 14–46. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0574.ch002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Glycosidic bonds":

1

Withers, Stephen G. „ENZYMATIC CLEAVAGE AND FORMATION OF GLYCOSIDIC BONDS: FROM GLYCOSIDASES AND LYASES TO TRANSFERASES AND GLYCOSYNTHASES“. In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rodgers, M., Jos Oomens, Giel Berden, Chase Leslie, Erik Soley, Harrison Roy, Zachary Devereaux et al. „INFLUENCE OF NATURALLY-OCCURRING AND SYNTHETIC MODIFICATIONS ON THE STRUCTURES AND GLYCOSIDIC BOND STABILITIES OF DNA AND RNA NUCLEOSIDES“. In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.ma02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie